МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «Кабардино-Балкарский государственный университет им. Х.М. Бербекова» (КБГУ)

ИНСТИТУТ ФИЗИКИ И МАТЕМАТИКИ

КАФЕДРА АЛГЕБРЫ И ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

УТВЕРЖДАЮ

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ (ОЦЕНОЧНЫХ МАТЕРИАЛОВ) ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

«АЛГЕБРАИЧЕСКИЕ СТРУКТУРЫ И ИХ ПРИЛОЖЕНИЯ»

Программа специалитета

01.05.01 Фундаментальные математика и механика (код и наименование программы специалитета)

Направленность (профиль) <u>Фундаментальная математика</u> (наименование направленности (профиля))

Квалификация (степень) выпускника специалист

> Форма обучения <u>очная</u>

НАЛЬЧИК 2023г.

СОДЕРЖАНИЕ

1.	Перечень компетенций и этапы их формирования	3
2.	Методические материалы и типовые контрольные задания, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы	5
3.	Перечень контрольных заданий и иных материалов, необходимых для оценки знаний, умений, навыков и опыта деятельности	6
4.	Экзаменационные вопросы по дисциплине	24

1. Перечень компетенций и этапы их формирования

Карта компетенции

Шифр и название компетенций:

- Способен публично представлять собственные и известные научные результаты (ПКС-3).

Индикаторы достижения компетенции ПКС-3:

- способен публично представлять результаты собственных исследований (*ПКС-3.1*);
- способен изучить новейшие результаты исследований и применить их в профессиональной деятельности (*ПКС-3.2*)

Общая характеристика компетенции

Тип компетенции: профессиональная компетенция выпускника образовательной программы по направлению подготовки 01.05.01 Фундаментальные математика и механика, уровень ВО - <u>специалитет</u>.

1.1. Этапы формирования компетенций и средства оценивания

Компетенции обучающегося, формируемые в результате освоения дисциплины	Индикаторы достижений	Основные показатели оценки результатов обучения	Вид оценочного средства
ПКС-3 Способен публично представлять собственные и известные научные результаты	ид-1_пкс-3.1 Способен публично представлять результаты собственных исследований ид-2_пкс-3.2. Способен изучить новейшие результаты исследований и применить их в профессиональной деятельности	Знать особенности представления собственно новых результатов научной деятельности Уметь обрабатывать полученные результаты, анализировать и осмысливать их с учетом имеющихся литературных данных Владеть навыками представления собственных и известных результатов научной деятельности.	Оценочные материалы для контрольной работы Типовые тестовые задания Оценочные материалы для проведения коллоквиума Типовые оценочные материалы к экзамену

1.2. Критерии формирования оценок на различных этапах их формирования Текущий и рубежный контроль

Этап (уровень)	Первый этап	Второй этап	Третий этап	
	(уровень)	(уровень)	(уровень)	
Баллы	36-50 баллов	51-60 баллов	61-70 баллов	
Характеристика	Полное или частичное	Полное или	Полное посещение	
	посещение аудиторных	частичное посеще-	аудиторных	
	занятий. Частичное	ние аудиторных	занятий.	
	выполнение домашнего	занятий.	Полное выполнение	
	задания. Частичное	Полное выполнение	домашнего задания,	
	выполнение заданий домашнего задания.		заданий контроль-	
	контрольных работ,	Выполнение	ных работ.	
	тестовых заданий на	заданий на	Выполнение	
	оценку	коллоквиуме на	заданий на	
	«удовлетворительно».	оценку «хорошо».	коллоквиуме на	
			оценку «отлично».	

На первом (начальном) этапе формирования компетенции формируются знания, умения и навыки, составляющие базовую основу компетенции, без которой невозможно ее дальнейшее развитие. Обучающийся воспроизводит термины, факты, методы, понятия, принципы и правила; решает учебные задачи по образцу.

На втором (основном) этапе формирования компетенции приобретается опыт деятельности, когда отдельные компоненты компетенции начинают «работать» в комплексе и происходит выработка индивидуального алгоритма продуктивных действий, направленных на достижение поставленной цели.

На этом этапе обучающийся осваивает аналитические действия с предметными знаниями по конкретной дисциплине, способен самостоятельно решать учебные задачи, внося коррективы в алгоритм действий, осуществляя координирование хода работы, переносит знания и умения на новые условия.

Третий (завершающий) этап — это овладение компетенцией. Обучающийся способен использовать знания, умения, навыки при решении задач повышенной сложности и в нестандартных условиях. По результатам этого этапа обучающийся демонстрирует итоговый уровень сформированности компетенции.

Промежуточная аттестация (экзамен)

Семестр	Шкала оценивания			
	Неудовлетворитель но (36-60 баллов)	Удовлетворительно (61-80 баллов)	Хорошо (81-90 баллов)	Отлично (91-100 баллов)
7	Студент имеет 36-60 баллов по итогам	Студент имеет 36-50 баллов по итогам	Студент имеет 51-	Студент имеет 61- 70 баллов по итогам
	текущего и рубежного	текущего и рубежного контроля,	итогам текущего и рубежного	текущего и рубежного
	контроля, на	на экзамене дал	контроля, на	контроля, на
	экзамене не дал полного ответа ни	полный ответ на один вопрос и частично	экзамене дал полный ответ на	экзамене дал полный ответ на
	на один вопрос.	(полностью) ответил	один вопроси	один вопрос и

Студент имеет	на второй.	частично	частично
36-45 баллов по	Студент имеет 46-60	(полностью)	(полностью)
итогам текущего и	баллов по итогам	ответил на второй.	ответил на второй.
рубежного	текущего и	Студент имеет 61	
контроля, на	рубежного контроля,	– 65 баллов по	
экзамене дал	на экзамене дал	итогам текущего и	
полный ответ	полный ответ на один	рубежного	
только на один	вопрос или частично	контроля, на	
вопрос.	ответил на все	экзамене дал	
	вопросы.	полный ответ на	
	Студент имеет по	один вопроси	
	итогам текущего и		
	рубежного контроля		
	61-70 баллов на	имеет 66-70	
	экзамене не дал	баллов по итогам	
	полного ответа ни на	текущего и	
	один вопрос.	рубежного	
		контроля, на	
		экзамене дал	
		полный ответ	
		только на один	
		вопрос.	

2. Методические материалы и типовые контрольные задания, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Перечень оценочных средств

№	Наименование	Краткая характеристика оценочного	Представление
	оценочного	средства	оценочного
	средства		средства в фонде
1.	Коллоквиум	Средство контроля усвоения учебного	Вопросы по
		материала темы, раздела или разделов	темам/разделам
		дисциплины, организованное как	дисциплины
		учебное занятие в виде собеседования	
		преподавателя с обучающимися.	
2.	Тест	Система стандартизированных заданий,	Фонд тестовых
		позволяющая автоматизировать	заданий
		процедуру измерения уровня знаний и	
		умений обучающегося.	
3.	Контрольная	Средство проверки умений применять	Комплект
	работа	полученные знания для решения задач	контрольных
		определенного типа по теме или	заданий по
		разделу	вариантам
		r	I

3. Перечень контрольных заданий и иных материалов, необходимых для оценки знаний, умений, навыков и опыта деятельности

3.1. Вопросы для коллоквиумов

Вопросы для оценки компетенции «ПКС-3»:

Тема 1. Алгебраические структуры с одной бинарной операцией.

- 1. Алгебраическая операция. Свойства операций.
- 2. Унарная и бинарная алгебраическая операция. Примеры.
- 3. Группойд, полугруппа, монойд, абелевая группа. Примеры.
- 4. Подгруппы. Порождающие множества.
- 5. Циклические группы. Смежные классы. Свойства. Индекс.
- 6. Двойные смежные классы.
- 7. Сопряженность и нормальные подгруппы.
- 8. Нормализаторы и централизаторы подмножеств. Центр.

Тема 2. Кольца и гомоморфизмы колец.

- 9. Общие сведения о кольцах. Свойства колец.
- 10. Делители нуля. Пример.
- 11. Кольцо главных идеалов.
- 12. Гомоморфизм колец.
- 13. Евклидовы и факториальные кольца.

Тема 3. Тела и поля.

- 14. Тела и поля: основные понятия.
- 15. Строение конечных полей.
- 16. Упорядоченные поля.
- 17. Арифметическая теория вещественных полей.

Тема 4. Приложения алгебраических структур.

- 18. Группы и их графы.
- 19. Конечные поля Галуа и групповые коды.
- 20. Собственные векторы и некоторые их приложения.
- 21. Конечные кольца и поля и их приложения.

Критерии формирования оценок по контрольным точкам (коллоквиум)

«отличный (высокий) уровень компетенции» (5 баллов) - ставится в случае, когда обучающийся демонстрирует знание теоретического материала на 100%;

«хороший (нормальный) уровень компетенции» (4 баллов) - ставится в случае, когда обучающийся демонстрирует знание теоретического материала на 70%;

«удовлетворительный (минимальный, пороговый) уровень компетенции» (3 балла) – ставится в случае, когда обучающийся затрудняется с правильной формулировкой теоретического материала, дает неполный ответ, демонстрирует знание теоретического материала на 50%;

«неудовлетворительный (ниже порогового) уровень компетенции» (2 и менее баллов) – ставится в случае, когда обучающийся дает неверную формулировкой теоретического материала, дает неверный ответ, демонстрирует незнание теоретического материала или знание материала менее чем на 40%.

3.2. Оценочные материалы для контрольной работы: контролируемая компетенция ПКС-3.

Вариант 1.

- 1. Доказать, что если e –единица и a–элемент порядка n группы G, то $a^k = e$ тогда и только тогда, когда k делится на n.
- 2. Доказать, что если элементы a и b группы G перестановочны, т.е. ab=ba, и имеют конечные взаимно простые порядки r и s, то их произведение ab имеет порядок rs.
- 3. Найти все подгруппы циклической группы порядка 24.
- 4. Пусть $G = \{a\}$ конечная циклическая группа порядка n. Доказать, что порядок любой подгруппы группы G делит порядок n этой группы.
- 5. Доказать, что число элементов группы G сопряженных с данным элементом делит порядок группы.

Вариант 2.

- 1. Найти смежные классы мультипликативной группы комплексных чисел, отличных от нуля, по подгруппе действительных чисел.
- 2. Доказать, что любая подгруппа индекса 2 является нормальным делителем.
- 3. Доказать, что число элементов группы G, сопряженных с a, равно индексу нормализатора N(a) в G.
- 4. Доказать, что все бесконечные циклические группы изоморфны между собой.
- 5. Выписать полную и специальную линейную группу для GL(2,3).

Вариант 3.

- 1. Доказать, что любое числовое поле содержит в качестве подполя поле рациональных чисел.
- 2. Выяснить, какую алгебраическую структуру образуют комплексные числа вида a + bi с рациональными a и b.
- 3. Найти условия, при которых матрица A, имеющая на побочной диагонали числа $\alpha_1, \alpha_2, ..., \alpha_n$, а на остальных местах нули, подобна диагональной матрице.
- 4. Пусть G группа, для которой $\Gamma_3(G) = 1$. Показать, что p^m есть наивысший порядок элемента группы $G/\Gamma_2(G)$, то ни один элемент из $\Gamma_2(G)$ не имеет порядка большего, чем p^m .
- 5. Пусть G группа, удовлетворяющая условию максимальности. Показать, что группа G сверхразрешима, если группа A(G) автоморфизмов группы G сверхразрешима.

Вариант 4.

- 1. Доказать, что группа корней n-й степени из единицы является единственной мультипликативной группой n-го порядка счисловыми элементами отличной от $\{0\}$.
- 2. Решить систему уравнений x + 2z = 1, y + 2z = 2, 2x + z = 1в поле вычетов по модулю 3 и по модулю 5.
- 3. Разложить в прямую сумму примарных циклических подгрупп циклическую группу < a > порядка 6.
- 4. Показать, что конечная абелева -группа порождается своими элементами высшего порядка.
- 5. Абелева имеет инварианты p^3, p^2 . Сколько подгрупп порядка p^2 она содержит?

Вариант 5.

- 1. Доказать, что конечное коммутативное кольцо без делителей нуля, содержащее более одного элемента, является полем.
- 2. Показать, что матрицы вида $\binom{a}{-b}$ где a и b действительные числа, образуют поле, изоморфное полю комплексных чисел.
- 3. Привести два примера абелевых p-групп, которые содержат точно $p^2 + p + 1$ подгрупп порядка p.
- 4. Пусть A абелева группа, порожденная a и b с определяющими отношениями $a^{p^3} = 1, b^p = 1$. Пусть K подгруппа, порожденная элементом $x = a^p b$. Показать, что невозможно выбрать базис для A и для K так, чтобы базисный элемент для K был степенью элемента A.
- 5. Доказать, что если $a^2 = e$ для любого элемента a группы G, то эта группа абелева.

Критерии формирования оценок по контрольным точкам (контрольные работы)

- **5** баллов правильно выполнены все задания, продемонстрирован высокий уровень владения материалом, проявлены превосходные способности применять знания и умения к выполнению конкретных заданий.
- 4 балла правильно выполнена большая часть заданий, присутствуют незначительные ошибки, продемонстрирован хороший уровень владения материалом, проявлены средние способности применять знания и умения к выполнению конкретных заданий.
- **2** балла задания выполнены менее чем наполовину, продемонстрирован неудовлетворительный уровень владения материалом, проявлены недостаточные способности применять знания и умения к выполнению конкретных заданий.
- *1 балл* дан неполный ответ, представляющий собой разрозненные знания по теме вопроса существенными ошибками в определениях.

0 баллов - при полном несоответствии всем критериям и отсутствии ответа.

3.3. Типовые тестовые задания по дисциплине «Алгебраические структуры и их приложения» (контролируемая компетенция ПКС-3):

V1: top

V2: 3 точка

V3: Смежные классы групп по подгруппе. Теорема Лагранжа и ее следствие

l: -

S:

Отметьте правильный ответ

Пусть G – группа и H – подгруппа группы G.

Произведение аН называется левым смежным классом

группы G по подгруппе Н, если ...

$$aH = \{ah_i \mid a \in G, h \in H\}$$

 $aH = \{ah_i \mid a \in H, h_i \in H\}$

```
aH = \{h, a \mid a \in G, h, \in H\}
aH = \{a^{-1}h_i \mid a \in G, h_i \in H\}
S:
Отметьте правильный ответ
Пусть G – группа и Н – подгруппа группы G. Произведение
Ha
       называется правым смежным классом группы G по
Ha
      подгруппе Н, если ...
H\alpha = \{h_i\alpha \mid \alpha \in G, h_i \in H\}
Ha = \{h_i a \mid a \in H, h_i \in H\}
Ha = \{ah_i \mid \alpha \in G, h_i \in H\}
Ha = \{a^{-1}h_i a \mid a \in G, h_i \in H\}
S:
Отметьте правильный ответ
Если элемент a содержится в H, то ...
+:
aH = H
|aH| = |G|
aH = G
Ha = G
1: -
S:
Отметьте правильный ответ
В качестве представителя смежного класса аН может
быть ...
лю бой элемент этого класса
лю бой элемент подгруппы Н
лю бой элемент группы С
только один элемент этого
S: Отметьте правильный ответ Пересечение любых двух различных левых
(правых) смежных классов группы G по подгруппе H ...
+:
пусто
```

```
совпадает с Н
не пусто
-:
совпадает с С
S: Отметьте правильный ответ Пусть G – группа, H – подгруппа группы G.
Левосторонним разложением группы G по подгруппе H называется ...
G = H + a_1 H + a_2 H + ... + a_{n-1} H
G=H+Ha_1+Ha_2+\ldots+Ha_{n-1}
G = a_1 H + a_2 H + \dots + a_{n-1} H
G = Ha_1 + Ha_2 + \dots + Ha_{n-1}
S: Отметьте правильный ответ Пусть G – группа, H – подгруппа группы G.
Правосторонним разложением группы G по подгруппе H называется ...
G = H + Ha_1 + Ha_2 + ... + Ha_{n-1}
G = H + a_1 H + a_2 H + ... + a_{n-1} H
G=a_1H+\alpha_2H+\ldots+a_{n-1}H
G = Ha_1 + Ha_2 + ... + Ha_{n-1}
S: Отметьте правильный ответ Число смежных классов в каждом из
разложений группы G по подгруппе H называется ...
индексом подгруппы Н в группе С
порядком подгруппы Н
порядком группы G
мощностью подгруппы Н
S: Отметьте правильный ответ Порядок и индекс подгруппы конечной
группы G являются ...
делителями порядка группы
делителями порядка всякого элемента группы
делителями порядка любой подгруппы группы С
делителями индекса любой подгруппы группы С
```

```
S: Отметьте правильный ответ Порядок всякого элемента конечной группы G
является ...
+:
делителе м порядка группы
делителем порядка любой подгруппы группы G
делителе м индекса любой подгруппы группы С
делителе м порядка любого другого элемента группы
I: -
S:
Отметьте правильный ответ
Пусть H – подгруппа группы G, \mid G \mid = 6, \mid H \mid = 3, тогда
индекс подгруппы Н в группе G равен:
+:
2
3
6
l: -
S:
Отметьте правильный ответ
Пусть H – подгруппа группы G, |G|=8, |H|=4,
тогда индекс подгруппы Н в группе G равен:
+:
2
-:
3
-:
8
l: -
S:
Отметьте правильный ответ
Пусть H – подгруппа группыG, \mid G \mid =12, \mid H \mid = 4,
тогда индекс подгруппы Н в группе G равен:
+:
3
-:
2
```

б

```
-:
12
l: -
S:
Отметьте правильный ответ
Пусть H – подгруппа группы G, \mid G \mid = 14, \mid H \mid = 2,
тогда индекс подгруппы Н в группе G равен:
+:
7
-:
14
-:
2
1
l: -
S:
Отметьте правильный ответ
Пусть H – подгруппа группы G, |G| = 12, |H| = 6,
тогда индекс подгруппы Н в группе G равен:
+:
2
-:
3
-:
4
6
1: -
S:
Отметьте правильный ответ
Пусть H – подгруппа группы G,|G|=16, |H|=8,
тогда индекс подгруппы Н в группе G равен:
+:
2
-:
-:
16
-:
4
```

l: -

```
S:
Отметьте правильный ответ
Пусть H – подгруппа группы G, |G| = 16, |H| = 2,
тогда индекс подгруппы Н в группе G равен:
+:
8
-:
2
4
-:
12
V1: top
V2: 1 точка
V3: Бинарная алгебраическая операция. Свойства.
S: Отметьте правильный ответ Закон, по которому двум элементам а и b из
множества А ставится в соответствие однозначно определенный элемент с из
этого множества называется...
+:
бинарной алгебраической операцией
унарной алгебраической операцией;
-:
бинарным отношением
бин арным соответствием
S: Отметьте правильный ответ Алгебраическая операция * на множестве А
называется ассоциативной, если...
\forall a,b,c \in A, a*(b*c)=(a*b)*c.
\forall a,b,c \in A, \alpha*(b*c)=(\alpha*c)*b
\forall a,b \in A, a*b=b*a
\forall a \in A, a*e=e*a=a
```

S: Отметьте правильный ответ Операция * на множестве А называется коммутативной, если...

+ $\forall a, b, \in A$. a*b=b*a $\forall a, b, c \in A$, a*(b*c) = (a*b)*c, $\forall a \in A$, a*e=e*a=a,

```
\forall a \in A, a*a'=a'*a=e.
S: Отметьте правильный ответ Множество G замкнутое относительно
бинарной алгебраической операции * называется...
+:
группоидом
полугруппой
моноидом
группой
S: Отметьте правильный ответ Группоид G, в котором операция *
ассоциативна, называется...
+:
полугруппой
группой
абелевой группой
моноидом
S: Отметьте правильный ответ Моноид G с симметричным элементом
относительно операции * называется...
+:
группой
группоидом
полугруппой
абелевой группой
1: -
S: Отметьте правильный ответ Полугруппа G с нейтральным элементом
относительно операции * называется...
+:
моноидом
группоидом
группой
абелевой группой
S: Отметьте правильный ответ Группа G, в которой операция *
```

коммутативна, называется...

```
+:
абелевой группой
группоидом
-:
полугруппой
моноидом
S: Отметьте правильный ответ На множестве натуральных чисел операция
вычитания а-ь...
определена, если a>b
-:
определена
определена, если a \neq b;
определена, если a<b
S: Отметьте правильный ответ На множестве натуральных чисел операция
деления а:b...
+:
не определена
-:
определена
определена, если a \neq b;
определена, если a>b
1: -
S:
Отметьте правильный ответ
На множестве натуральных чисел операция умножения a \cdot b ...
+:
определена
-:
определена, если a \neq b;
определена, если a>b
-:
S: Отметьте правильный ответ На множестве нечетных целых чисел операция
сложения а+b...
+:
не определена
определена
определена, если a \neq b
```

```
определена, если α>b
```

S: Отметьте правильный ответ Подгруппой группы рациональных чисел относительно сложения является...

+: (Z, +) - множество целых чисел относительно сложения

. (N, +) — множество натуральных чисел относительно сложения

(С, +) – множество комплексных чисел относительно сложения

(R, +) — множество действительных чисел относительно сложения I: -

S: Отметьте правильный ответ Подгруппой группы комплексных чисел относительно сложения является...

(R, +) — множество действительных чисел относительно сложения

(N, +) — множество натуральных чисел относительно сложения

(Z, -) - множество целых чисел относительно вычитания

 $(2Z, \, \cdot)$ - мно жество четных целых чисел относительно вычитания I: -

Отметьте правильный ответ

Порядок элемента а =
$$\binom{123456}{612543}$$
 \in S_6 равен...

4 -: 3 -: 2

S:

-: 5 I: -

S:

Отметьте правильный ответ

Порядок элемента а =
$$\binom{123456}{231645}$$
 \in S_6 равен...

+: 3 -: 4

```
5
I: -
S:
Отметьте правильный ответ
Порядок элемента а = \binom{123456}{312564} \in S_6 равен...
+:
3
5
1: -
S:
Отметьте правильный ответ
Порядок элемента а = \binom{123456}{341256} \in S_6 равен...
2
3
5
4
S: Группа, которая не может быть разложена в прямое произведение своих
истинных подгрупп, называется ...
+:
неразложимой
примарной
неразрешимой
периодической
S: Всякая подгруппа разрешимой группы является ...
разрешимой
р-подгруппой
абелевой
нильпотентной
```

-:

```
S: Всякая фактор-группа разрешимой группы является ...
разрешимой
-:
р-подгруппой
сверхразреши мой
нильпотентной
S: Всякая подгруппа нильпотентной группы является ...
нильпотентной
разрешимой
циклической
силовской р-подгруппой
S: Всякая фактор-группа нильпотентной группы является ...
+:
нильпотентной
разреши мой
циклической
сверхразрешимой
S: Всякая конечная группа, разложимая в прямое произведение р-групп, ...
нильпотентна
разрешима
-:
абелева
сверхразреши ма
l: -
S: Всякая конечная р-группа является ...
нильпотентной
цикличной
свободной
```

```
-:
смещанной
I: -
S:
```

Отметьте правильный ответ

В мультипликативной группе G нейтральный элемент е,

симметричный элемент a' .

+:

$$e = 1, a' = a^{-1}$$

-:
 $e = 0, a' = a^{-1}$
-:
 $e = 1, a' = -a$
-:
 $e = 0, a' = -a$
I:-
S:

Отметьте правильный ответ

В аддитивной группе G нейтральный элемент е, симметричный

элемент a' .

#:

$$e = 0, a' = -a$$

 $e = 0, a' = a^{-1}$
 $e = 1, a' = -a$
 $e = 1, a' = a^{-1}$

S: Отметьте правильный ответ Число элементов группы G называется...

+: порядком группы С

-: порядком элемента *а* группы G

порядком подгруппы группы G

порядком группоида группы G

1: -

S: Отметьте правильный ответ Если e — единица и a — элемент порядка n группы G, то...

$$+: a^n = e$$

$$-: a^n = n$$

$$G = n$$

l: -

S: Отметьте правильный ответ Подмножество Н группы G называется подгруппой этой группы, если...

+:

H образует группу относительно операции, определенной в ${\bf G}$

```
Н образует группоид относительно операции, определенной в G
порядок Н не больше порядка группы С
H образует моноид относительно операции, определенной в G
S: Отметьте правильный ответ Порядком элемента а группы G называется
наименьшее натуральное п, при котором...
a^n = e
-:
a^n = a
-:
a^n = n
\alpha^n = |G|
S: Отметьте правильный ответ Если все степени элемента а являются
различными элементами группы, то а называется...
+: элементом бесконечного порядка

    элементом конечного порядка

злементом первого порядка

🚉 элементом второго порядка
1: -
S: Отметьте правильный ответ Всякая группа, все элементы которой имеют
конечный порядок, называется...
+ периодической
-: смещанной

    группой без кручения

-: аддитивной группой
S: Отметьте правильный ответ Группа называется ..., если она содержит как
элементы бесконечного порядка, так и отличные от единицы элементы
конечных порядков.
+:
смешанной
периодической
группой без кручения
аддитивной группой
V1: top
V2: 1 точка
V3: Алгебраические структуры с одной алгебраической операцией
1: -
S: Отметьте правильный ответ Множество натуральных чисел относительно
```

20

сложения образует:

```
+:
полугруппу, но не моноид
группоид, но не полугруппу
моноид
-:
группу
S: Отметьте правильный ответ Множество натуральных чисел относительно
умножения образует:
моноид, но негруппу
группоид, но не полугруппу
полугруппу, но не моноид
группу
S: Отметьте правильный ответ Множество целых чисел относительно
сложения образует:
абелеву группу
группоид, но не полугруппу
полугруппу, но не моноид
моноид, но негруппу
S: Отметьте правильный ответ Множество рациональных чисел относительно
сложения образует:
+:
абелеву группу
полугруппу, но не моноид
моноид, но не группу
группу, но не абелевую группу
S: Отметьте правильный ответ Множество целых чисел относительно
умножения образует:
моноид, но не группу
абелевую группу
полугруппу, но не моноид
```

```
группу, но не абелевую группу
S: Отметьте правильный ответ Множество комплексных целых чисел
относительно сложения образует:
+:
группу
группоид но не полугруппу
полугруппу но не моноид
моноид но не группу
1: -
S: Отметьте правильный ответ Множество всех квадратных матриц порядка п
с действительными элементами относительно сложения образует...
+:
абелевую группу
группу, но не абелевую группу
моноид, но негруппу
группоид, но не полугруппу
V1: top
V2: 2 точка
V3: Изоморфизм групп.
S: Отметьте правильный ответ Пересечение любого множества подгрупп
группы G является...
подгруппой этой группы
пустым
циклической подгруппой
регулярной подгруппой
S: Отметьте правильный ответ Всевозможные степени элемента а группы G
образуют подгруппу группы G, которую называют...

    циклической подгруппой

    регулярной подгруппой

периодической подгруппой

    истинной подгруппой

1: -
S: Отметьте правильный ответ Элемент а, из степеней которого составлена
```

циклическая группа G = , называется ... этой группы.

```
образующим элементом
обратным элементом
ней тральным эле ментом
симметричным элементом
S: Отметьте правильный ответ Всякая подгруппа циклической группы
является...
+:
циклической
периодической
регулярной
инвариантной
S: Отметьте правильный ответ Все бесконечные циклические группы...
+:
изоморфны между собой
совпадают
-:
неизоморфны
изоморфны мультипликативной группе корней и-й степени из единицы
1: -
S:
Отметьте правильный ответ
В циклической группе < a > в качестве образующего
элемента можно взять элемент...
+:
05
-:
a^2
-:
a^3
-:
d.
1: -
Отметьте правильный ответ
В циклической группе < a > в качестве образующего элемента
```

можно взять элемент...

+
a⁷
a⁶
a⁶

Критерии формирования оценок по тестовым заданиям:

По итогам выполнения тестовых заданий оценка производится по пятибалльной шкале. При правильных ответах на:

- 89-100% заданий «5» (баллов);
- 70-88% заданий «4» баллов);
- 50-69% заданий «3» (балла);
- 30-49% заданий «2» (балла);
- 10-29% заданий «1» (балл);
- менее 10% заданий «0» (баллов).

4. Экзаменационные вопросы по дисциплине «Алгебраические структуры и их приложения»

№	Вопрос	Код компетенции
1.	Алгебраическая операция. Свойства операций.	(согласно РПД) ПКС-3
2.	Унарная и бинарная алгебраическая операция. Примеры.	ПКС-3
3.	Группойд, полугруппа, монойд, абелевая группа. Примеры.	ПКС-3
4.	Подгруппы. Порождающие множества.	ПКС-3
5.	Циклические группы. Смежные классы. Свойства. Индекс.	ПКС-3
6.	Двойные смежные классы.	ПКС-3
7.	Сопряженность и нормальные подгруппы.	ПКС-3
8.	Нормализаторы и централизаторы подмножеств. Центр.	ПКС-3
9.	Гомоморфизмы. Теорема о гомоморфизмах групп.	ПКС-3
10.	Эндоморфизмы.	ПКС-3
11.	Изоморфизмы.	ПКС-3
12.	Автоморфизмы. Группа автоморфизмов.	ПКС-3
13.	Общие сведения о кольцах. Свойства колец.	ПКС-3
14.	Делители нуля. Пример.	ПКС-3

15.	Кольцо главных идеалов.	ПКС-3
16.	Гомоморфизм колец.	ПКС-3
17.	Евклидовы и факториальные кольца.	ПКС-3
18.	Тела и поля: основные понятия. Строение конечных полей.	ПКС-3
19.	Упорядоченные поля.	ПКС-3
20.	Арифметическая теория вещественных полей.	ПКС-3
21.	Алгебраические структуры. Модели. Булева алгебра.	ПКС-3
22.	Группы и их графы.	ПКС-3
23.	Конечные поля Галуа и групповые коды.	ПКС-3
24.	Собственные векторы и некоторые их приложения.	ПКС-3
25.	Конечные кольца и поля и их приложения.	ПКС-3

Форма экзаменационного билета по учебной дисциплине

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «Кабардино-Балкарский государственный университет им. Х.М. Бербекова» (КБГУ)

Кафедра— Алгебры и дифференциальных уравнений Дисциплина — Алгебраические структуры и их приложения **Направление подготовки** — 01.05.01 Фундаментальные математика и механика, 3 курс

Экзаменационный билет №1

- 1. Подгруппы. Циклические группы. Примеры.
- 2. Гомоморфизмы. Теорема о гомоморфизмах групп.
- 3. Какую алгебраическую структуру образуют положительные действительные числа, если операция определена так: $a * b = a^b$?

Руководитель ОПОП	/	/
Зав. кафедрой А и ДУ	1	1