МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «Кабардино-Балкарский государственный университет им. Х.М. Бербекова» (КБГУ)

ИНСТИТУТ ФИЗИКИ И МАТЕМАТИКИ КАФЕДРА АЛГЕБРЫ И ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

УТВЕРЖДАЮ

Руководитель ОПОП

М.С. Нирова

« 12 » Сирся 2023 г.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ (ОЦЕНОЧНЫХ МАТЕРИАЛОВ) ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

«ГРУППОВЫЕ СВОЙСТВА ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ»

Программа специалитета

01.05.01 Фундаментальные математика и механика (кол и наименование программы специалитета)

Направленность (профиль)

<u>Фундаментальная математика</u>

(наименование направленности (профиля))

Квалификация (степень) выпускника <u>специалист</u>

> Форма обучения очная

НАЛЬЧИК 2023г.

СОДЕРЖАНИЕ

- 1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы, описание показателей, критериев оценивания компетенций на различных этапах их формирования3
- 2. Методические материалы и типовые контрольные задания, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы5
- 3. Перечень контрольных заданий и иных материалов, необходимых для оценки знаний, умений, навыков и опыта деятельности**6**

1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы, описание показателей, критериев оценивания компетенций на различных этапах их формирования

Карта компетенции

Шифр и название компетенций:

ПКС-1 - Умение ясно и понятно представлять математические знания с учетом уровня аудитории.

Индикаторы достижения компетенции ПКС-1:

- **ПКС-1.1** Способен обрабатывать, анализировать и осуществлять сбор информации по заданной тематике.
- **ПКС-1.2** Способен формулировать математические знания с учетом уровня слушателей.

Общая характеристика компетенции

Тип компетенции: профессиональная компетенция выпускника образовательной программы по направлению подготовки высшего образования 01.05.01 Фундаментальные математика и механика, уровень ВО <u>специалитет</u>.

1.1. Этапы формирования компетенций и средства оценивания

Компетенции обучающегося, формируемые в результате освоения дисциплины	Индикаторы достижений	Ссновные показатели оценки результатов обучения	Вид оценочного средства
ПКС-1 Умение ясно и понятно представлять математические знания с учетом уровня аудитории	ид-1_ПКС-1.1 Способен обрабатывать, анализировать и осуществлять сбор информации по заданной тематике. ид-2_ПКС-1.2. Способен формулировать математические знания с учетом уровня слушателей.	Знать перспективные научные направления в профильной предметной области. Уметь публично представлять собственные и известные научные результаты в данной предметной области. Владеть навыками устного и письменного аргументированного изложения собственных результатов	Оценочные материалы для контрольной работы Типовые тестовые задания Оценочные материалы для проведения коллоквиума Типовые оценочные материалы к экзамену

1.2. Критерии формирования оценок на различных этапах их формирования

Текущий и рубежный контроль

Этап (уровень)	Первый этап	Второй этап	Третий этап
	(уровень)	(уровень)	(уровень)
Баллы	36-50 баллов	51-60 баллов	61-70 баллов
Характеристика	Полное или частичное	Полное или	Полное посещение
	посещение аудиторных	частичное	аудиторных
	занятий. Частичное	посещение	занятий.
	выполнение практических	аудиторных	Полное
	работ. Выполнение	занятий.	выполнение
	контрольных работ, тестовых	Полное	практических
	заданий на оценку	выполнение	занятий.
	«удовлетворительно».	практических	Выполнение
		работ.	контрольных
		Выполнение	работ, тестовых
		контрольных	заданий на оценки
		работ, тестовых	«отлично».
		заданий на	
		оценки	
		«хорошо».	

На первом (начальном) этапе формирования компетенции формируются знания, умения и навыки, составляющие базовую основу компетенции, без которой невозможно ее дальнейшее развитие. Обучающийся воспроизводит термины, факты, методы, понятия, принципы и правила; решает учебные задачи по образцу.

На втором (основном) этапе формирования компетенции приобретается опыт деятельности, когда отдельные компоненты компетенции начинают «работать» в комплексе и происходит выработка индивидуального алгоритма продуктивных действий, направленных на достижение поставленной цели.

На этом этапе обучающийся осваивает аналитические действия с предметными знаниями по конкретной дисциплине, способен самостоятельно решать учебные задачи, внося коррективы в алгоритм действий, осуществляя координирование хода работы, переносит знания и умения на новые условия.

Третий (завершающий) этап — это овладение компетенцией. Обучающийся способен использовать знания, умения, навыки при решении задач повышенной сложности и в нестандартных условиях. По результатам этого этапа обучающийся демонстрирует итоговый уровень сформированности компетенции.

Промежуточная аттестация (экзамен)

Семестр	Шкала оценивания			
	Неудовлетворительн о (36-60 баллов)	Удовлетворительно (61-80 баллов)	Хорошо (81-90 баллов)	Отлично (91-100 баллов)
9	Студент имеет 36-60 баллов по итогам текущего и рубежного контроля, на экзамене не дал полного ответа ни на один вопрос. Студент имеет	Студент имеет 36-50 баллов по итогам текущего и рубежного контроля, на экзамене дал полный ответ на один вопрос и частично (полностью) ответил на второй.	Студент имеет 51-60 баллов по итогам текущего и рубежного контроля, на экзамене дал полный ответ на один вопрос и частично (полностью) ответил на второй.	Студент имеет 61-70 баллов по итогам текущего и рубежного контроля, на экзамене дал полный ответ на один вопрос и частично (полностью) ответил на второй.

36-45 баллов по	Студент имеет 46-60	Студент имеет 61 – 65	
итогам текущего и	баллов по итогам	баллов по итогам	
рубежного контроля,	текущего и рубежного	текущего и рубежного	
на экзамене дал	контроля, на экзамене	контроля, на экзамене	
полный ответ только	дал полный ответ на	дал полный ответ на	
на один вопрос.	один вопрос или	один вопрос и	
	частично ответил на все	частично ответил на	
	вопросы.	второй. Студент имеет	
	Студент имеет по	66-70 баллов по итогам	
	итогам текущего и	текущего и рубежного	
	рубежного контроля 61-	контроля, на экзамене	
	70 баллов на экзамене	дал полный ответ	
	не дал полного ответа	только на один вопрос.	
	ни на один вопрос.		

2. Методические материалы и типовые контрольные задания, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Перечень оценочных средств

№	Наименование оценочного	Краткая характеристика оценочного средства	Представление оценочного
1.	средства Коллоквиум	Средство контроля усвоения учебного материала темы, раздела или разделов дисциплины, организованное как учебное занятие в виде собеседования преподавателя с обучающимися.	средства в фонде Вопросы по темам/разделам дисциплины
2.	Задача (практическое задание)	Средство оценки умения применять полученные теоретические знания в практической ситуации. Задача (задание) должна быть направлена на оценивание тех компетенций, которые подлежат освоению в данной дисциплине, должна содержать четкую инструкцию по выполнению или алгоритм действий.	Комплект задач и заданий
3.	Контрольная работа	Средство проверки умений применять полученные знания для решения задач определенного типа по теме или разделу	Комплект контрольных заданий по вариантам
4.	Тест	Система стандартизированных заданий, позволяющая автоматизировать процедуру измерения уровня знаний и умений обучающегося.	Фонд тестовых заданий

3. Перечень контрольных заданий и иных материалов, необходимых для оценки знаний, умений, навыков и опыта деятельности

3.1. Вопросы для коллоквиумов

Вопросы для оценки компетенции «ПКС-1».

Тема 1. Группы, допускаемые дифференциальными уравнениями.

- 1. Локальная группа Ли. Три основные теоремы Ли.
- 2. Инварианты и инвариантные многообразия.
- 3. Определяющие уравнения. Задача групповой классификации.
- 4. Алгебры Ли операторов.

Тема 2. Основные группы систем уравнений.

- 1. Системы уравнений первого порядка.
- 2. Уравнения второго и высших порядков.
- 3. Полные системы.
- 4. Линейное уравнение второго порядка с двумя независимыми переменными.

Тема 3. Инвариантные решения.

- 1. Инварианты группы преобразований.
- 2. Инвариантные решения уравнений.
- 3. Классификация инвариантных решений.

Тема 4. Частичная инвариантность.

- 1. Ранг и дефект многообразия.
- 2. Частично инвариантные решения.
- 3. Кратные волны.

Тема 5. Дифференциальные инварианты.

- 1. Автономные системы.
- 2. Групповое расслоение.
- 3. Специальные задачи и приложения.

Критерии формирования оценок (оценивания) устного опроса.

В результате устного опроса знания, обучающегося оцениваются по следующей шкале:

4 балла, ставится, если обучающийся:

- 1) полно излагает изученный материал, даёт правильное определенне понятий;
- 2) обнаруживает понимание материала, может обосновать свои суждения, применить знания на практике, привести необходимые примеры не только по учебнику, но и самостоятельно составленные;
- 3) излагает материал последовательно и правильно с точки зрения норм литературного языка.
- *3 балла*, ставится, если обучающийся даёт ответ, удовлетворяющий тем же требованиям, что и для балла «1», но допускает 1-2 ошибки, которые сам же исправляет, и 1-2 недочёта в последовательности и языковом оформлении излагаемого.
- **2-1 балл**, ставится, если обучающийся обнаруживает знание и понимание основных положений данной темы, но:
 - 1) излагает материал неполно и допускает неточности в определении понятий;
- 2) не умеет достаточно глубоко и доказательно обосновать свои суждения и привести свои примеры;
- 3) излагает материал непоследовательно и допускает ошибки в языковом оформлении излагаемого.

0 баллов, ставится, если обучающийся обнаруживает незнание большей части соответствующего раздела изучаемого материала, допускает ошибки в формулировке.

Баллы могут ставиться не только за единовременный ответ, но и рассредоточенный во времени, т.е. за сумму ответов, данных студентом на протяжении занятия.

3.2. Практические задания для оценки компетенции «ПКС-1».

Тема 1. Группы, допускаемые дифференциальными уравнениями.

- 1. Проверить, образуют ли указанные семейства преобразований локальную однопараметрическую группу Ли G_1 . Найти закон умножения и ввести канонический параметр (если закон умножения не канонический):
 - а) Перенос: $\overline{x} = x + a\lambda$; $x, \overline{x}, \lambda \in \mathbb{R}^n$, λ заданный вектор, $a \in \mathbb{R}$.
- б) Растяжение: $\bar{x} = ax$ (однородное); $\bar{x}^i = a^{\mu_i} x^i, i = 1,...,n$ (неоднородное). Здесь $x, \overline{x}, \mu \in \mathbb{R}^n, \mu$ - заданный вектор, a > 0.
 - 2. Найти преобразования группы G_1 заданной оператором:
 - a) $(x + y)\partial_x + (y x)\partial_y$;

$$δ) x^2 ∂_x + xy ∂_y;$$

B) $(1 + x^2)\partial_x + xy\partial_y$;

$$\Gamma$$
) $x^2 \partial_x + y^2 \partial_y$.

3. Выполнить замену переменных

$$x = r\cos\theta$$
, $y = r\sin\theta$, $u = U\cos\theta - V\sin\theta$, $u = U\sin\theta + V\cos\theta$

в дифференциальных операторах:

a)
$$x\partial_x + y\partial_v + u\partial_u + v\partial_v$$
;

$$\delta y \partial_x - x \partial_y + v \partial_u - u \partial_v$$
.

4. Найти инварианты однопараметрической группы Ли заданной оператором

a)
$$y\partial_x + x\partial_y$$

$$θ$$
 $(1 + x2) ∂x + xy ∂y + z ∂z;$

- 5. Проверить инвариантность многообразия M относительно преобразования G_1 заданной оператором X и записать многообразие M в инвариантах допускаемого оператора:
- а) $X = (y + xz)\partial_x + (yz x)\partial_y + (1 + z^2)\partial_z$, M однополостный гиперболоид $x^2 + y^2 y^2$ $z^2 = 1$;

б)
$$X = y(\partial_x + \partial_y)$$
, M - прямая $y = 0$.

Методические рекомендации по решению задач

При выполнений заданий необходимо внимательно ознакомиться с контентом по соответствующему вопросу темы «Группы, допускаемые дифференциальными уравнениями». Основная цель выработать навыки исследования групп, допускаемых дифференциальными уравнениями.

Тема 2. Основные группы систем уравнений.

- 1. Вычислить первое и второе продолжение операторов:
- a) $X = x^2 \partial_x + xu \partial_u$, $Z = R^2(t, x) \times R(u)$;
- $\delta) X = 4t\partial_t u\partial_u Z = R^2(t, x) \times R(u).$
- 2. Показать, что уравнение нелинейной теплопроводности $u_t u^4 u_{xx} = 0$ допускает алгебру Ли L_5 операторов $X_1=\partial_t,~X_2=\partial_x,~X_3=2t\partial_t+x\partial_x,~X_4=4t\partial_t-u\partial_u,~X_5=x^2\partial_x+u\partial_t$ $xu\partial_{u}$.
 - 3. Показать, что уравнения одномерной газовой динамики для политропного газа

$$u_t + uu_x + \rho^{-1}p_x = 0,$$

$$\rho_t + \rho u_x + u\rho_x = 0,$$

$$p_t + \gamma pu_x + up_x = 0$$

допускают алгебру Ли L_6 операторов $X_1=\partial_t, X_2=\partial_x, X_3=t\partial_t+x\partial_x, X_4=t\partial_t+u\partial_u.$ В случае $\gamma = 3$ алгебра Ли расширяется $X_5 = t^2 \partial_t + tx \partial_x + (x - tu) \partial_u - t\rho \partial_\rho - 3tp \partial_p$.

4. Вычислить группы преобразований, допускаемых ОДУ второго порядка:

a)
$$y'' = y^{-2}y' - (xy)^{-1};$$
 b) $y'' = \exp(-y').$

5. Найти группу преобразований, допускаемых одномерными уравнениями мелкой воды (g = const)

$$u_t + uu_x + gh_x = 0, h_t + hu_x + uh_x = 0.$$

6. Найти преобразования растяжения, допускаемые уравнением пограничного слоя на полубесконечной пластине (задача Блазиуса)

$$\psi_y \psi_{xy} - \psi_x \psi_{yy} = \nu \psi_{yyy},$$

$$\psi(x,0) = \psi_y(x,0) = 0, \psi_y \to U \ (y \to \infty).$$

Здесь ν и U - постоянные.

7. Доказать, что модель двумерных изоэнтропических движений политропного газа с показателем адиабаты $\gamma = 2$, описываемая системой дифференциальных уравнений

$$u_t + uu_x + vu_y + 2cc_x = 0,$$

$$v_t + uv_x + vv_y + 2cc_y = 0,$$

$$c_t + uc_x + vc_y + 2^{-1}c(u_x + v_y) = 0$$

допускает проектный оператор

$$X = t^{2} \partial_{t} + tx \partial_{x} + ty \partial_{y} - tc \partial_{c} + (x - tu) \partial_{u} + (y - tv) \partial_{v}.$$

8. Показать, что уравнения вращающейся мелкой воды (g, f = const)

$$u_t + uu_x + vu_y - fv + gh_x = 0,$$

 $v_t + uv_x + vv_y + fu + gh_y = 0,$
 $h_t + (uh)_x + (vh)_y = 0$

допускают операторы $X_1=\partial_t, X_2=\partial_x, X_3=\partial_y, X_4=-y\partial_x+x\partial_y-v\partial_u+u\partial_y.$

Методические рекомендации по решению задач

При выполнений заданий необходимо внимательно ознакомиться с контентом по соответствующему вопросу темы «Основные группы систем уравнений». Основная цель исследование основных групп систем уравнений.

Тема 3. Инвариантные решения.

- 1. Выяснить, образуют ли операторы $X_1,...,X_r$ алгебру Ли L_r . Если образуют, найти преобразования, которыми порождается соответствующая группа G_r :
 - a) $X_1 = \partial_t, X_2 = \partial_x, X_3 = t\partial_x + \partial_u, X_4 = t\partial_t + x\partial_x, X_5 = x\partial_x + u\partial_u + 2h\partial_h;$
 - $6) X_1 = \partial_t, X_2 = \partial_x, X_3 = 2t\partial_t + x\partial_x, X_4 = 4t\partial_t u\partial_u, X_5 = x^2\partial_x + xu\partial_u.$
 - 2. Найти инварианты многопараметрических групп Ли L_r операторов $X_1,...,X_r$:
 - a) $X_1 = 2t\partial_t + x\partial_x$, $X_2 = 2x\partial_x + u\partial_u$;
 - $6) X_1 = x\partial_x + y\partial_y + p\partial_p + q\partial_q, X_2 = y\partial_x x\partial_y + q\partial_p p\partial_q.$
 - 3. Построить пример полной системы операторов R^2 , не порождающих алгебру Ли.
- 4. Вычислить ранг и дефект многообразия M относительно группы G, порождаемой операторами X_{α} . Проверить, имеет ли место редукция многообразия M. Охарактеризовать орбиту многообразия M:

у многообразия
$$M$$
:

a) $M: \psi^1 = \frac{u+v}{x} = 0, \psi^2 = \frac{y^2 + uv}{x^2} = 0,$
 $G: X_1 = x\partial_x + y\partial_y, X_2 = u\partial_u + v\partial_v;$
 $M: \psi^1 = \frac{y}{x} + 1 = 0, \psi^2 = u^2 + v - \frac{x}{y} = 0,$
 $G: X_1 = x\partial_x + y\partial_y, X_2 = \partial_v.$

- 5. Проверить, что множество верхнетреугольных матриц размерности $n \times n$ образует алгебру Ли с коммутатором [A, B] = AB BA.
- 6. Проверить, что множество векторов $a \in R^3$ образует алгебру Ли относительно коммутатора $[a,b] = a \times b$. Построить таблицу коммутаторов этой алгебры Ли. Является ли она простой, разрешимой?
- 7. Показать, что линейной заменой базиса каждая двумерная алгебра Ли приводится к алгебре Ли со следующими коммутационными соотношениями между базисными элементами X_1 и X_2 :
 - а) $[X_1, X_2] = 0$ абелева; б) $[X_1, X_2] = X_1$ не абелева.
 - 8. Пусть M, N идеалы в L. Показать, что $M \cap N$ идеал в L.
- 9. Пусть M,N идеалы в L. Показать, что $M+N=\{X+Y|X\in M,Y\in N\}$ также идеал в L.

10. Может ли алгебра Ли одновременно быть простой и разрешимой?

Методические рекомендации по решению задач

При выполнений заданий необходимо внимательно ознакомиться с контентом по соответствующему вопросу темы «Инвариантные решения». Основная цель исследование инвариантных решений.

Тема 4. Частичная инвариантность.

- 1. Доказать, что любая подалгебра разрешимой алгебры Ли также разрешима.
- 2. Доказать, что любая разрешимая алгебра содержит нетривиальный абелев идеал.
- 3. Являются ли следующие алгебры Ли разрешимыми?

a)
$$X_1 = \partial_t, X_2 = \partial_x, X_3 = t\partial_x + \partial_u, X_4 = t\partial_t + x\partial_x, X_5 = x\partial_x + u\partial_u + 2h\partial_h;$$

6)
$$X_1 = \partial_t, X_2 = \partial_x, X_3 = 2t\partial_t + x\partial_x, X_4 = 4t\partial_t - u\partial_u, X_5 = x^2\partial_x + xu\partial_u.$$

4. Являются ли алгебры Ли $L(X_1, X_2, X_3)$ и $L'(Y_1, Y_2, Y_3)$ изоморфными?

$$X_1 = \partial_t, X_2 = 2t\partial_t + x\partial_x + y\partial_y - u\partial_u - v\partial_v, X_3 = t^2\partial_t + tx\partial_x + ty\partial_y + (x - tu)\partial_u + (y - tv)\partial_v,$$

$$Y_{1} = \partial_{t} - \frac{f}{2}\partial_{\theta}, Y_{2} = \cos(\text{ft})\partial_{t} - \frac{f}{2}r\sin(\text{ft})\partial_{r} - \frac{f}{2}\cos(\text{ft})\partial_{\theta} + \frac{f}{2}(U\sin(\text{ft}) - \text{frcos}(\text{ft}))\partial_{U} + \frac{f}{2}(V + \text{fr})\sin(\text{ft})\partial_{V}, Y_{3} = \sin(\text{ft})\partial_{t} + \frac{f}{2}r\cos(\text{ft})\partial_{r} - \frac{f}{2}\sin(\text{ft})\partial_{\theta} - \frac{f}{2}(U\cos(\text{ft}) + \text{frsin}(\text{ft}))\partial_{U} - \frac{f}{2}(V + \text{fr})\cos(\text{ft})\partial_{V}.$$

5. Построить и по возможности проинтегрировать инвариантную подмодель системы уравнений Е по допускаемой подалгебре H:

Ении Е по допускаемой подалгеоре H:
$$E: u_t + uu_x + vu_y = 0, v_t + uv_x + vv_y = 0;$$
 a)
$$H = \left\{ t\partial_x + \partial_u, t\partial_y + \partial_v \right\}.$$
 б) $E: u_t - u^4 u_{xx} = 0; H = \left\{ 2t\partial_t + x\partial_x, 2x\partial_x + u\partial_u \right\}.$

6. Показать, что уравнения двумерного движения политронного газа с показателем адиабата $\gamma=2$

$$u_t + uu_x + vu_y + 2cc_x = 0,$$

 $v_t + uv_x + vv_y + 2cc_y = 0,$
 $c_t + uc_x + vc_y + 2^{-1}c(u_x + v_y) = 0$

имеет инвариантное относительно подалгебры $\{X,Y,Z\}$

$$X = \partial_x + t\partial_y + \partial_v, Y = \partial_y - t\partial_x - \partial_u,$$

$$Z = (t^2 + 1)\partial_t + (tx + y)\partial_x + (ty - x)\partial_y - tc\partial_c + (x - tu + v)\partial_u + (y - tv - u)\partial_v$$

решение нулевого ранга

$$u = \frac{\mathsf{tx-ay}}{t^2+1}, v = \frac{x+\mathsf{aty}}{a(t^2+1)}, c = \frac{c_0}{\sqrt{t^2+1}}$$
 (a, $c_0 = \mathsf{const}$).

Методические рекомендации по решению задач

При выполнений заданий необходимо внимательно ознакомиться с контентом по соответствующему вопросу темы «Частичная инвариантность». Основная цель выработать навыки исследования частичной инвариантности.

Тема 5. Дифференциальные инварианты.

1. Показать, что уравнения подмодели, определяющей частично инвариантное решение системы

$$u_t + uu_x + vu_y + 2cc_x = 0,$$

 $v_t + uv_x + vv_y + 2cc_y = 0,$
 $c_t + uc_x + vc_y + 2^{-1}c(u_x + v_y) = 0$

по подалгебре $H=\{\partial_{\nu},t\partial_{\nu}+\partial_{\nu}\}$, имеют вид

$$u_t + uu_x + 2cc_x = 0, c_t + uc_x + 2^{-1}c(u_x + v_1) = 0,$$

$$v_{1t} + uv_{1x} + v_1^2 = 0, v_{0t} + uv_{0x} + v_0v_1 = 0,$$

где $u=u(t,x),\ c=c(t,x),\ v=v_1(t,x)y+v_0(t,x).$ Указать ранг и дефект этого решения.

2. Выяснить, возможно ли построение частично инвариантных решений уравнений

$$u_t + uu_x + vu_y + 2cc_x = 0,$$

$$v_t + uv_x + vv_y + 2cc_y = 0,$$

$$c_t + uc_x + vc_y + 2^{-1}c(u_x + v_y) = 0$$

по подалгебрам:

- a) $H = {\partial_t, -t\partial_t + u\partial_u + v\partial_v + c\partial_c};$
- $(5) \quad H = \left\{ \partial_t, t^2 \partial_t + tx \partial_x + ty \partial_y tc \partial_c + (x tu) \partial_u + (y tv) \partial_v, 2t \partial_t + x \partial_x + y \partial_y c \partial_c u \partial_u v \partial_v \right\}.$
 - 3. Построить оптимальные системы подалгебр для алгебр Ли L:
 - a) $L_3: X_1 = \partial_x, X_2 = \partial_y, X_3 = x\partial_x + (x+y)\partial_y;$
 - $6) L_3: X_1 = \partial_x + \partial_p, X_2 = \partial_y + \partial_q, X_3 = y\partial_x x\partial_y + q\partial_p p\partial_q.$
- 4. Построить оптимальные системы подалгебр для алгебр Ли L используя двухэтапный алгоритм:
 - a) $L_5: X_1 = \partial_t, X_2 = \partial_x, X_3 = 2t\partial_t + x\partial_x, X_4 = 4t\partial_t u\partial_u, X_5 = x^2\partial_x + xu\partial_u;$
 - 6) $L_6: X_1 = \partial_x, X_2 = \partial_y, X_3 = t\partial_x + \partial_u, X_4 = t\partial_y + \partial_y, X_5 = y\partial_x x\partial_y + v\partial_u u\partial_y,$
 - $X_6 = x\partial_x + y\partial_y + u\partial_u + v\partial_v.$
 - 5. Проинтегрировать ОДУ методом интегрирующего множителя:
 - a) $y' + y^2 2x^{-2} = 0 (X = x\partial_x y\partial_y);$
 - $6) y' \sin(x^{-1}y) = 0 (X = x\partial_x + y\partial_y).$
- 6. Применить метод «выпрямления» допускаемого оператора для интегрирования ОДУ:
 - a) $(y')^2 y x^2 = 0 (X = x\partial_x + 2y\partial_y);$
 - 6) $xy' y + \exp(y/x) = 0 \left(X = x^2 \partial_x + xy \partial_y\right)$.
- 7. Показать, что ОДУ второго порядка допускает оператор X и c его помощью понизить порядок уравнения (F произвольная гладкая функция):
 - a) $xy'' = F(x^{-1}y, y') (X = x\partial_x + y\partial_y);$

6)
$$y'' = (1 + (y')^2)^{3/2} F\left(\sqrt{x^2 + y^2}, \frac{y - xy'}{x + yy'}\right) (X = y\partial_x - x\partial_y).$$

Методические рекомендации по решению задач

При выполнений заданий необходимо внимательно ознакомиться с контентом по соответствующему вопросу темы «Дифференциальные инварианты». Основная цель исследование дифференциальных инвариантов.

Критерии формирования оценок по заданиям для самостоятельной работы студента (типовые задачи):

«отлично» (4 балла) - обучающийся показал глубокие знания материала по поставленным вопросам, грамотно, логично его излагает, структурировал и детализировал информацию, избегая простого повторения информации из текста, информация представлена в переработанном виде. Свободно использует необходимые формулы при решении задач;

«хорошо» (3 балла) - обучающийся твердо знает материал, грамотно его излагает, не допускает существенных неточностей в процессе решения задач;

«удовлетворительно» (2 балла) - обучающийся имеет знания основного материала по поставленным вопросам, но не усвоил его деталей, допускает отдельные неточности при решении задач;

«неудовлетворительно» (менее 1 балла) – обучающийся допускает грубые ошибки в ответе на поставленные вопросы и при решении задач.

3.3. Оценочные материалы для контрольной работы: контролируемая компетенция «ПКС-1».

Рейтинговая контрольная работа №1

- 1. Для проективной группы $x' = \frac{x+a_1}{a_2x+a_3}$ получить три независимых друг от друга инфинитезимальных преобразования и построить общее инфинитезимальное преобразование исходной группы.
- 2. Для присоединенной двухпараметрической группы x' = ax + bc двумя независимыми инфинитезимальными преобразованиями $\frac{df}{dx}$, $x\frac{df}{dx}$ получить линейную однородную группу.

Рейтинговая контрольная работа №2

1. Построить и по возможности проинтегрировать инвариантную подмодель системы уравнений Е по допускаемой подалгебре Н:

$$\begin{split} E \colon & u_t = u_{zz} - p_x, T_t = T_{zz} - uT_x, p_z = T; \\ & i. \ H = \partial_x + \beta \partial_z; \\ ii. \ H = \big\{ \partial_t + x \partial_x + u \partial_u + 2p \partial_p + 2T \partial_T \big\}. \end{split}$$

2. Являются ли следующие алгебры Ли разрешимыми?

$$X_1 = \partial_x, X_2 = \partial_y, X_3 = y\partial_x - x\partial_y + v\partial_u - u\partial_v, X_4 = x\partial_x + y\partial_y + u\partial_u + v\partial_v.$$

3. Вычислить ранг и дефект многообразия M относительно группы G, порождаемой операторами X_{α} . Проверить, имеет ли место редукция многообразия M. Охарактеризовать орбиту многообразия M:

$$\begin{aligned} M: \psi^1 &= \operatorname{arctg}(y/x) - t = 0, \\ \psi^2 &= \frac{(x-y)u + (x+y)v}{x^2 + y^2} = 0, \\ G: X_1 &= -y\partial_x + x\partial_y - v\partial_u + u\partial_v, \\ X_2 &= \partial_t, \\ X_3 &= x\partial_x + y\partial_y + u\partial_u + v\partial_v. \end{aligned}$$

Рейтинговая контрольная работа №3

1. Построить оптимальные системы подалгебр для алгебр Ли L:

$$L_3: X_1 = \partial_t, X_2 = t^2 \partial_t + tx \partial_x + ty \partial_y, X_3 = 2t \partial_t + x \partial_x + y \partial_y.$$

2. Построить оптимальные системы подалгебр для алгебр Ли L используя двухэтапный алгоритм:

$$L_6: X_1 = y\partial_z - z\partial_y + v\partial_\omega - \omega\partial_v, X_2 = z\partial_x - x\partial_z + \omega\partial_u - u\partial_\omega, X_3 = x\partial_y - y\partial_x + u\partial_v - v\partial_u, X_4 = \partial_y, X_5 = t\partial_t + x\partial_x + y\partial_y + z\partial_z, X_6 = t\partial_t - u\partial_u - v\partial_v - \omega\partial_\omega.$$

3. Проинтегрировать ОДУ методом интегрирующего множителя:

$$y' - (x + y)^2 = 0 (X = \partial_x - \partial_y).$$

4. Применить метод «выпрямления» допускаемого оператора для интегрирования ОДУ:

$$y' - x^{-1}y + x\exp(x^{-1}y) = 0$$
 $(X = \partial_x + x^{-1}y\partial_y).$

5. Показать, что ОДУ второго порядка допускает оператор X и c его помощью понизить порядок уравнения (F – произвольная гладкая функция):

$$x^2y'' = F(y, yy') (X = x\partial_x).$$

Критерии формирования оценок по контрольным работам:

7 баллов - ставится за работу, выполненную полностью без ошибок и недочетов; обучающийся демонстрирует знание теоретического и практического материала по теме практической работы, решено 100% задач;

6 баллов – ставится за работу, выполненную полностью, но при наличии в ней не более одной негрубой ошибки и одного недочета, не более трех недочетов. Обучающийся демонстрирует знание теоретического и практического материала по теме практической работы, допуская незначительные неточности при решении задач, решено 70% задач;

5 баллов — ставится за работу, если бакалавр правильно выполнил не менее 2/3 всей работы или допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой. Обучающийся затрудняется с правильной оценкой предложенной задачи, дает неполный ответ, решено 55% задач

менее 4 баллов – ставится за работу, если число ошибок и недочетов превысило норму для оценки 3 или правильно выполнено менее 2/3 всей работы. Обучающийся дает неверную оценку ситуации, решено менее 50% задач.

3.4. Типовые тестовые задания по дисциплине «Групповые свойства дифференциальных уравнений» (контролируемая компетенция «ПКС-1»):

- 1) Подмножество G_r называется
 - +: локальной группой Ли
 - -: нелокальной группой Ли
 - -: дополнением группы Ли
 - -: центром группы Ли
- 2) Кривая g(t) называется однопараметрической подгруппой, если для любых двух ее точек выполнено условие

$$g(s)g(t) = g(s+t)$$

$$g(s)g(t) = sg(t)$$

$$g(s)g(t) = g(st)$$

$$g(s)g(t) = tg(s)$$

$$X_{\alpha}I(x) = 0$$
, $(\alpha = \overline{1,r})$ обеспечивающее, что $I(x)$ будет инвариантом G_r^n , является ...

- +: необходимым и достаточным
- -: необходимым
- -: достаточным
- -: недостаточным

Критерии формирования оценок по тестовым заданиям:

По итогам выполнения тестовых заданий оценка производится по пятибалльной шкале. При правильных ответах на:

89-100% заданий – «5» (баллов);

70-88% заданий – «4» баллов);

50-69% заданий – «3» (балла);

30-49% заданий – «2» (балла);

10-29% заданий – «1» (балл);

менее 10% заданий – «0» (баллов).

4. Экзаменационные вопросы по дисциплине «Групповые свойства дифференциальных уравнений»

№	Вопрос	Код компетенции
1	Понятие группы. Группа Ли	ПКС-1
2	Инварианты группы и инвариантные многообразия	ПКС-1
3	Дефект инвариантности многообразия относительно	ПКС-1
	группы	
4	Задача групповой классификации. Алгебры Ли операторов	ПКС-1
5	Обыкновенные дифференциальные уравнения,	ПКС-1
	обладающие фундаментальной системой решений	
6	Интегрирующий множитель и замена переменных в	ПКС-1
	обыкновенных дифференциальных уравнениях первого	
	порядка	
7	Интегрирующий множитель и замена переменных в	ПКС-1
	дифференциальных уравнениях первого порядка	
8	Системы уравнений первого порядка	ПКС-1
9	Уравнения второго и высших порядков	ПКС-1
10	Полные системы	ПКС-1
11	Линейные уравнения в частных производных второго	ПКС-1
	порядка, допускающие группу максимального порядка	
12	Исследование линейного дифференциального уравнения в	ПКС-1
	частных производных второго порядка, допускающего	
	тривиальную конформную группу	
13	Группы, допускаемые обыкновенными	ПКС-1
	дифференциальными уравнениями второго порядка	
14	Нелинейные уравнения в частных производных второго	ПКС-1
	порядка (случай группы максимального порядка)	
15	Определяющие уравнения для дифференциальных	ПКС-1
	уравнений в частных производных второго порядка	
16	Инвариантные решения уравнений	ПКС-1
17	Классификация инвариантных решений	ПКС-1
18	Частично инвариантные решения	ПКС-1
19	Кратные волны	ПКС-1
20	Групповое расслоение	ПКС-1

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Кабардино-Балкарский государственный университет им. Х.М. Бербекова» (КБГУ)

Кафедра— Алгебры и дифференциальных уравнений **Дисциплина** — Групповые свойства дифференциальных уравнений **Направление подготовки** — 01.05.01 Фундаментальные математика и механика, 5 курс

Экзаменационный билет №1

- 1. Понятие группы. Группа Ли.
- 2. Полные системы.
- 3. Построить оптимальные системы подалгебр для алгебр Ли *L*:

$$L_3: X_1 = \partial_t, X_2 = t^2 \partial_t + tx \partial_x + ty \partial_y, X_3 = 2t \partial_t + x \partial_x + y \partial_y$$

Руководитель ОПОП	//	/
Зав. кафедрой А и ДУ	1	1