Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Кабардино-Балкарский государственный университет им. Х.М. Бербекова» (КБГУ)

ИНСТИТУТ ФИЗИКИ И МАТЕМАТИКИ КАФЕДРА АЛГЕБРЫ И ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ (ОЦЕНОЧНЫХ МАТЕРИАЛОВ) ПО ДИСЦИПЛИНЕ

«ТЕОРИЯ ГРАФОВ И ЕЕ ПРИЛОЖЕНИЕ»

(код и наименование дисциплины)

Программа специалитета

<u>01.05.01 Фундаментальные математика и механика</u>

(код и наименование программы специалитета)

Направленность (профиль)

<u>Фундаментальная математика</u>
(наименование направленности (профиля))

Квалификация (степень) выпускника специалист

> Форма обучения <u>очная</u>

Нальчик 2023

СОДЕРЖАНИЕ

- 1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы, описание показателей, критериев оценивания компетенций на различных этапах их формирования3
- 2. Методические материалы и типовые контрольные задания, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы5
- 3. Перечень контрольных заданий и иных материалов, необходимых для оценки знаний, умений, навыков и опыта деятельности5

1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы, описание показателей, критериев оценивания компетенций на различных этапах их формирования

Карта компетенции

Шифр и название компетенций: способен публично представлять собственные и известные научные результаты (ПКС-3).

Индикаторы достижения компетенции ПКС-3:

- ПКС-3.1. Способен публично представлять результаты собственных исследований.
- ПКС-3.2. Способен изучить новейшие результаты исследований и применить их в профессиональной деятельности.

Общая характеристика компетенции

Тип компетенции: профессиональная компетенция выпускника образовательной программы по направлению специалитета 01.05.01 Фундаментальные математика и механика, уровень ВО - специалитет.

1.1. Этапы формирования компетенций и средства оценивания

Компетенции обучающегося, формируемые в результате освоения дисциплины	Индикаторы достижения компетенции	Основные показатели оценки результатов обучения	Вид оценочного средства
ПКС-3. Способен публично представлять собственные и известные научные результаты	ПКС-3.1. Способен публично представлять результаты собственных исследований. ПКС-3.2. Способен изучить новейшие результаты исследований и применить их в профессиональной деятельности	Знать особенности представления собственно новых результатов научной деятельности Уметь обрабатывать полученные результаты, анализировать и осмысливать их с учетом имеющихся литературных данных	Оценочные материалы для практических занятий. Оценочные материалы для коллоквиума. Оценочные материалы для проведения тестирования. Оценочные материалы для промежуточной аттестации
		Владеть навыками представления собственных и известных результатов научной деятельности.	

1.2. Критерии формирования оценок на различных этапах их формирования

Текущий и рубежный контроль

текущии и руоежный контроль						
Этап (уровень)	Первый этап		Второй этап		Третий этап	
	(уровень)		(уровень)		(уровень)	
Баллы	36-50 баллов		51-60 баллов		61-70 баллов	
Характеристика	Полное	или	частичное	Полное	или	Полное посещение
	посещение		аудиторных	частичное		аудиторных
	занятий.		Частичное	посещение		занятий.
	выполнение	Э	практических	аудиторных		Полное
	работ.		Выполнение	занятий.		выполнение

контрольных	работ,	тестовых	Полное	практических
заданий	на	оценку	выполнение	занятий.
«удовлетвори	тельно».		практических	Выполнение
			работ.	контрольных
			Выполнение	работ, тестовых
			контрольных	заданий на оценки
			работ, тестовых	«ОТЛИЧНО».
			заданий на	
			оценки	
			«хорошо».	

На первом (начальном) этапе формирования компетенции формируются знания, умения и навыки, составляющие базовую основу компетенции, без которой невозможно ее дальнейшее развитие. Обучающийся воспроизводит термины, факты, методы, понятия, принципы и правила; решает учебные задачи по образцу.

На втором (основном) этапе формирования компетенции приобретается опыт деятельности, когда отдельные компоненты компетенции начинают «работать» в комплексе и происходит выработка индивидуального алгоритма продуктивных действий, направленных на достижение поставленной цели.

На этом этапе обучающийся осваивает аналитические действия с предметными знаниями по конкретной дисциплине, способен самостоятельно решать учебные задачи, внося коррективы в алгоритм действий, осуществляя координирование хода работы, переносит знания и умения на новые условия.

Третий (завершающий) этап — это овладение компетенцией. Обучающийся способен использовать знания, умения, навыки при решении задач повышенной сложности и в нестандартных условиях. По результатам этого этапа обучающийся демонстрирует итоговый уровень сформированности компетенции.

Промежуточная аттестация (экзамен)

Оценка	Удовлетворительно	Хорошо	Отлично
Баллы	61 – 80	81 – 90	91 – 100
Баллы Характеристика	Знает отдельные перспективные задачи в соответствующем научном направлении Неуверенно докладывает известные результаты в данной предметной области Готов изложить свои результаты в письменной форме	Может указать некоторые научные направления, представляющие теоретический и практический интерес Хорошо представляет известные научные результаты по профилю подготовки Может устно и письменно изложить свои результаты	91 – 100 Хорошо ориентируется в современных научных направлениях, соответствующих профильной предметной области Доказательно и аргументировано представляет собственные и известные научные результаты в данной предметной области Убедительно и аргументировано излагает свои собственные результаты, как в устной, так и в письменной форме

2. Методические материалы и типовые контрольные задания, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Перечень оценочных средств

№	Наименование оценочного	Краткая характеристика оценочного средства	Представление оценочного
1	средства		средства в фонде
1.	Коллоквиум	Средство контроля усвоения учебного	Вопросы по
		материала темы, раздела или разделов	темам/разделам
		дисциплины, организованное как	дисциплины
		учебное занятие в виде собеседования	
		преподавателя с обучающимися.	
2.	Задача	Средство оценки умения применять	Комплект задач и
	(практическое	полученные теоретические знания в	заданий
	задание)	практической ситуации. Задача	
		(задание) должна быть направлена на	
		оценивание тех компетенций, которые	
		подлежат освоению в данной	
		дисциплине, должна содержать четкую	
		инструкцию по выполнению или	
		алгоритм действий.	
3.	Контрольная	Средство проверки умений применять	Комплект
	работа	полученные знания для решения задач	контрольных
		определенного типа по теме или	заданий по
		разделу	вариантам
4.	Тест	Система стандартизированных заданий,	Фонд тестовых
		позволяющая автоматизировать	заданий
		процедуру измерения уровня знаний и	
		умений обучающегося.	

3. Перечень контрольных заданий и иных материалов, необходимых для оценки знаний, умений, навыков и опыта деятельности

3.1. Вопросы для коллоквиумов (контролируемая компетенция ПКС-3) Тема 1. Графы. Типы графов.

- 1. Графы, типы графов. Изображение графов. Основные понятия теории графов.
- 2. Матричное представление графов.
- 3. Эйлеровы и гамильтоновы графы. Плоские и планарные графы.
- 4. Двудольные графы и многодольные графы.
- 5. Связность и реберная связность.
- 6. Изоморфизм графов. Свойства изоморфных графов. Примеры.
- 7. Реберно регулярные и сильно регулярные графы. Сильно регулярные графы без треугольников.
- 8. Графы Петерсена, Шрикханде, Клебша, Шлефли и три графа Чанга.

Тема 2. Автоморфизм графов.

- 1. Границы для числа вершин в графах и автоморфизмы графов.
- 2. Автоморфизмы сильно регулярных графов с параметрами: (76,35,18,14), (64,35,18,20), (95,40,12,20).
- 3. Автоморфизмы 4-изорегулярных графов и обобщенного шестиугольника порядка (3, 27).
- 4. Автоморфизмы полутреугольных графов с μ=6.

Тема 3. Приложения теории графов.

- 1. Дистанционно регулярные графы, в которых окрестности вершин изоморфны графу Хофмана Синглтона.
- 2. Графы, в которых окрестности вершин изоморфны графу Гевиртца.
- 3. Графы, в которых окрестности вершин являются графами, дополнительными к графу Зейделя.
- 4. О графах, в которых каждый μ подграф является пятиугольником.
- 5. Графы, в которых окрестности вершин псевдогеометрические графы для GQ (3,5).
- 6. О сильно регулярных графах с собственным значением 2 и их расширениях.
- 7. О графах, в которых окрестности вершин изоморфны графу Хигмена Симса.

Критерии формирования оценок по контрольным точкам (коллоквиум)

«отличный (высокий) уровень компетенции» (5 баллов) - ставится в случае, когда обучающийся демонстрирует знание теоретического материала на 100%;

«хороший (нормальный) уровень компетенции» (4 баллов) - ставится в случае, когда обучающийся демонстрирует знание теоретического материала на 70%;

«удовлетворительный (минимальный, пороговый) уровень компетенции» (3 балла) — ставится в случае, когда обучающийся затрудняется с правильной формулировкой теоретического материала, дает неполный ответ, демонстрирует знание теоретического материала на 50%;

«неудовлетворительный (ниже порогового) уровень компетенции» (2 и менее баллов) – ставится в случае, когда обучающийся дает неверную формулировкой теоретического материала, дает неверный ответ, демонстрирует незнание теоретического материала или знание материала менее чем на 40%.

3.2. Практические задания для самостоятельной работы обучающегося (контролируемая компетенция ПКС - 3)

Тема 1. Графы. Типы графов.

- 1. Граф задан множеством вершин $V = \{a, b, c, d, e, f\}$ и множеством ребер $E = \{(a, c), (a, f), (b, c), (c, d), (d, f)\}$. Нарисуйте этот граф, постройте для него матрицы смежности и инцидентности, списки смежности.
- 2. В графе 30 вершин и 80 ребер, каждая вершина имеет степень 5 или 6. Сколько в нем вершин степени 5?
- 3. В графе каждая вершина имеет степень 3, а число ребер заключено между 16 и 20. Сколько вершин в этом графе?
- 4. Граф G имеет множество вершин $\{1,2,...,n\}$. Число ребер в подграфе, полученном удалением вершины i, равно m_i , i=1,2,...,n. Сколько ребер в графе G?
- 5. Граф имеет n вершин и m ребер. Сколько у него различных а) остовных; б) порожденных подграфов?

- 6. Найдите граф G с минимальным числом вершин n>1 такой, что оба графа G и \overline{G} связны.
- 7. Найдите все (с точностью до изоморфизма) графы с 5 вершинами диаметра 3.
- 8. Найдите все (с точностью до изоморфизма) графы с 4 вершинами, имеющие точно одну центральную вершину.
- 9. Сколько имеется неориентированных графов с n вершинами, в которых допускаются петли?
- 10. Найдите число неориентированных мультиграфов без петель, в которых для каждой пары вершин имеется не более четырех соединяющих эти вершины ребер.

Методические рекомендации по решению задач.

Приступая к самостоятельному решению задач, необходимо внимательно прочесть теоретический материал по соответствующему вопросу темы. Важнейшие понятия этой темы: полный граф, мультиграф, петля, орграф, подграф, петля, матричное представление графа, изоморфизм графа и др. Эти понятия следует выучить и разобраться в их соотношениях. При решении задач используются формулы, объяснение которых представлено в теме 1.

Тема 2. Автоморфизм графов.

- 1. По матрице длин ребер графа с помощью алгоритма Дейкстры найдите
 - 1) кратчайшие пути от вершины 7 до всех остальных вершин
 - 2) кратчайший путь между вершинами 1 и 4;

$$\begin{pmatrix} 0 & 3 & - & - & - & 2 \\ 3 & 0 & 2 & - & 6 & - & - \\ - & 2 & 0 & 2 & - & 1 & - \\ - & - & 2 & 0 & 5 & 5 & - \\ - & 6 & - & 5 & 0 & 1 & - \\ - & - & 1 & 5 & 1 & 0 & 1 \\ 2 & - & - & - & - & 1 & 0 \end{pmatrix}$$

- 2. Каркасы, построенные для некоторого графа с помощью алгоритмов Прима, Краскала и Дейкстры, имеют соответственно веса a,b и c. Какое из следующих соотношений обязательно выполняются для этих чисел? 1) $a \ge c$; 2) a = b; 4) b = c.
- 3.Изобразите с помощью леса всевозможные размещения четырех элементов множества {a; b; c; d) по трем ячейкам и подсчитайте их число.
- 4. Сколько существует различных деревьев с пятью пронумерованными вершинами? Изобразите три из них.
- 5. Нарисуйте дерево:
- а) с одной корневой вершиной и радиусом 3;
- б) с одной корневой вершиной и радиусом 4;
- в) с двумя корневыми вершинами и радиусом 4;
- г) с двумя корневыми вершинами и радиусом 5.
- 6. Найти кратчайшие пути в орграфе от первой вершины ко всем остальным, используя алгоритм Дейкстры. Постройте дерево кратчайших путей.
- 7. Дан исходный граф G = (X, V) (рис. 1). Построить порождённый подграф G' = (X', V'), который получается из исходного после удаления указанных вершин и инцидентных им ребер. Найти в G' кратчайший остов. Вершина, которую необходимо удалить X8, X9.

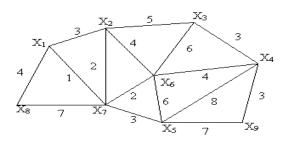


Рис. 1

8. В графе, представленном на рисунке ниже, найти примеры маршрута (указать длину), любой цепи, простой цепи, цепи, не являющейся простой, любого цикла (указать длину), простого цикла (указать длину).

- 9. Является ли полный граф с одинаковым числом n рёбер, которым инцидентна каждая вершина, эйлеровым графом? Объяснить ответ. Привести примеры.
- 10. Задан двудольный граф, в котором n число вершин из множества A, а m число вершин из множества B. В каком случае граф будет эйлеровым графом, а в каком случае гамильтоновым графом?

Методические рекомендации по решению задач.

Приступая к самостоятельному решению задач, необходимо внимательно прочесть теоретический материал по соответствующему вопросу темы. Важнейшие понятия этой темы: подграф, двудольный граф, клика, коклика, автоморфизм графа, сильно регулярный граф, дерево, лес и др. Эти понятия следует выучить и разобраться в их соотношениях. При решении задач используются формулы, объяснение которых представлено в теме 2.

Тема 2. Регулярные графы.

- 1. С помощью теоремы Кирхгофа найдите число каркасов у графа $K_{2,3}$.
- 2. Какое наименьшее число ребер нужно удалить из графа K_8 , чтобы получился двудольный граф?
- 3. Двудольный граф имеет kкомпонент связности. Каким числом способов его можно разбить на две доли?
- 4. Разработайте алгоритм, проверяющий, является ли данный граф двудольным.
- 5. Что нужно изменить в алгоритме построения эйлерова цикла, чтобы получился алгоритм построения эйлерова пути в графе с двумя вершинами нечетной степени? 6.Найти сумму степеней всех вершин графа Петерсена.
- 7. Найти метрические характеристики графа кенигсбергских мостов.
- 8. Найти ранг и спектр графа, заданного матрицей $A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{pmatrix}$.
- 9. Найдите хроматическое число графов P_n .
- 10. Сколько имеется абстрактных графов с $\alpha(G) = 3$ имеющих гамильтонов цикл а) с 5 вершинами; б) с 6 вершинами?

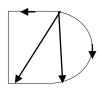
Методические рекомендации по решению задач.

Приступая к самостоятельному решению задач, необходимо внимательно прочесть теоретический материал по соответствующему вопросу темы. Важнейшие понятия этой темы: дистанционно регулярные графы, графы Хофмана — Синглтона, Гевиртца и Хигмена — Симса, псевдогеометрический граф, μ — подграф и др. Эти понятия следует выучить и разобраться в их соотношениях. При решении задач используются формулы, объяснение которых представлено в теме 3.

Критерии формирования оценок по заданиям для самостоятельной работы студента (типовые задачи):

«отлично» (3 балла) - обучающийся показал глубокие знания материала по поставленным вопросам, грамотно и логично его излагает. Свободно использует необходимые формулы при решении задач;

«хорошо» (2 балла) - обучающийся твердо знает материал, грамотно его излагает, но допускает неточности в процессе решения задач;

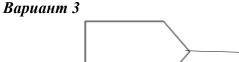

«удовлетворительно» (1 балл) - обучающийся имеет знания основного материала по поставленным вопросам, но не усвоил его деталей, допускает отдельные неточности при решении задач;

«неудовлетворительно» (0 баллов) – обучающийся допускает грубые ошибки в ответе на поставленные вопросы и при решении задач.

3.3. Оценочные материалы для контрольной работы (контролируемая компетенция ПКС-3)

Вариант 1

1. Составить матрицу инцидентности


- 2. Построить простой граф с 6 вершинами, имеющий наибольшее число ребер.
- 3. Доказать, что в полном графе с n- вершинами ребер.

Вариант 2

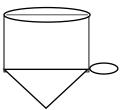
1. Дана матрица смежности графа. Найти центр графа Используя матрицу смежности, рассчитать общее число путей длиной 1, 2, 3, 4, 5, 6. Матрица смежности:

$$A(G) = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}.$$

- 2. Изобразите полный граф с 4 вершинами.
- 3. Найдется ли граф с 5-вершинами, степени которого все различны между собой?

1. Для заданного графа найти маршрут длины 4, цепь, простую цепь, цикл и простой цикл.

- 2. К простому графу с 6 ребрами добавлены 3 концевых ребра и 5 петель. Найти сумму степеней всех вершин полученного графа.
- 3. Найти спектр графа, заданного матрицей $A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{pmatrix}$.


Вариант 4

- 1. Составить матрицу смежности графа
- 2. Построить все мультиграфы с четырьмя вершинами и четырьмя ребрами.
- 3. Найти сумму степеней всех вершин графа Петерсена.

Вариант 5

1. Найти ранг графа

- 2. Привести пример эйлерова и гамильтонова графа.
- 3. Найти метрические характеристики графа кенигсбергских мостов.

Критерии формирования оценок по контрольным точкам (контрольные работы)

- **4 балла -** правильно выполнены все задания, продемонстрирован высокий уровень владения материалом, проявлены превосходные способности применять знания и умения к выполнению конкретных заданий.
- *3 балла* правильно выполнена большая часть заданий, присутствуют незначительные ошибки, продемонстрирован хороший уровень владения материалом, проявлены средние способности применять знания и умения к выполнению конкретных заданий.
- **2 балла -** задания выполнены более чем наполовину, присутствуют серьезные ошибки, продемонстрирован удовлетворительный уровень владения материалом, проявлены низкие способности применять знания и умения к выполнению конкретных заланий.
- 1 балл дан неполный ответ, представляющий собой разрозненные знания по теме вопроса существенными ошибками в определениях.
 - 0 баллов при полном несоответствии всем критериям и отсутствии ответа.

3.4. Тестовые задания по дисциплине «Теория графов и ее приложения» (контролируемая компетенция ПКС-3):

V1: top

V2: 1 рейтинговая точка

V3: Графы их виды. Геометрическое изображение графов.

I:

S: Граф называется неориентированным, если ... не ориентировано

-: ни одно из ребер

-: хотя бы 1 ребро

+: каждое его ребро

-: хотя бы 2 ребра

I:

S: Вершина называется изолированной, если она ...

+: не инцидентна никакому ребру

-: инцидентна только 2 ребрам

-: инцидентна хотя бы 1 ребру

-: инцидентна только 1 ребру

I:

S: Ребра, инцидентные одной и той же вершине, называются

-: равными

-: ориентированными

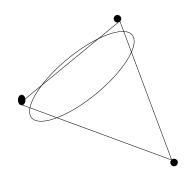
+: смежными

-: неориентированными

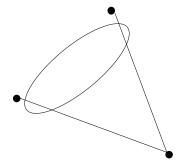
I:

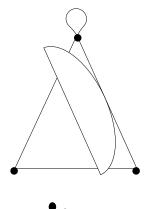
S: Пары вершин, соединяющиеся более чем одним ребром называются

+: кратными

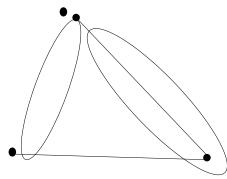

-: петлей

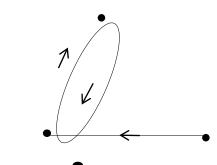
-: дугой

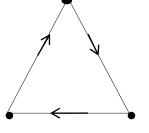

-: изолированными

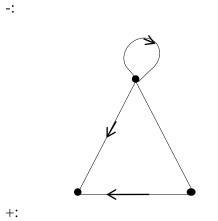

I:

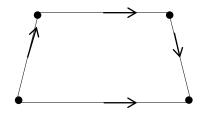
S: Что из приведенного не является мультиграфом?


-:

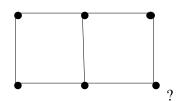


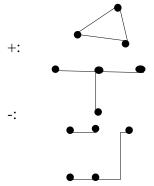

+:


-:



I: S: Что из приведенного не является орграфом?





-:

I:

S: Что из приведенного не является подграфом графа

-:

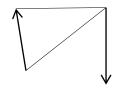
-:

I:

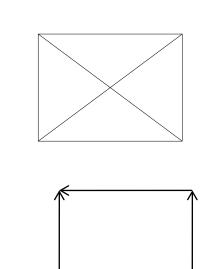
• •

S: -: циклом

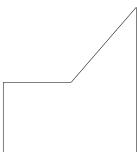
-: цепью


+: пустым

-: орграфом

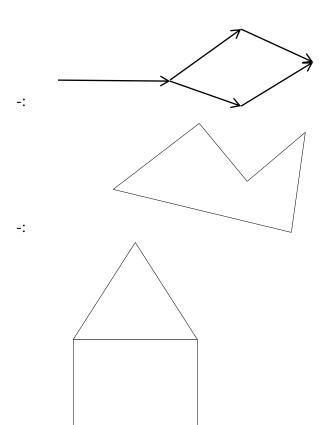

I:

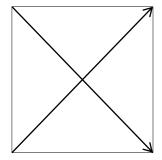
S: Какой из данных графов является смешанным?


Данный граф является

+:

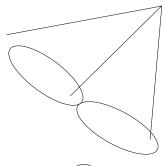
:

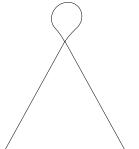



-: I:

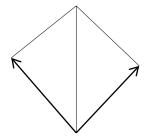
-:

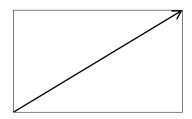
-:


S: Какой из данных графов является смешанным?

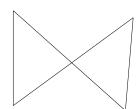


+: I:

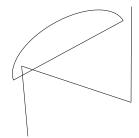

S: Какой из данных графов является мультиграфом?


+:

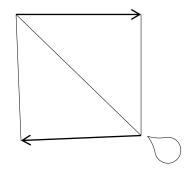
-:

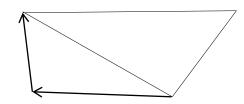


-:

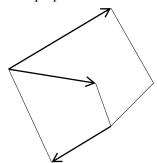


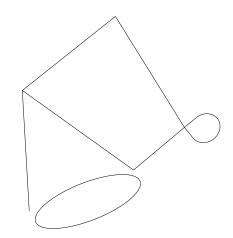
-: I:

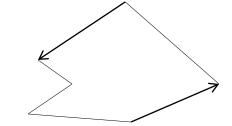

S: Какой из данных графов является мультиграфом?


-:

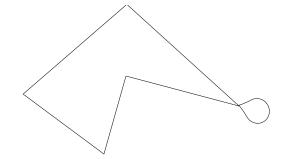
+:



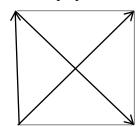

-:

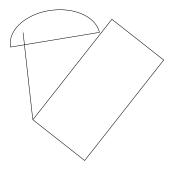

-: I:

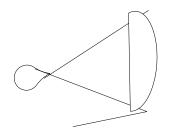
S: Какой из графов является псевдографом?



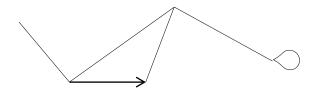
+:


-:

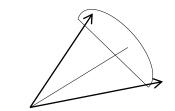

-:


I:

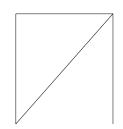
S: Какой из графов является псевдографом?



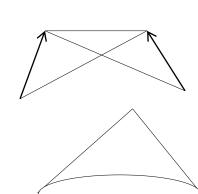
-:

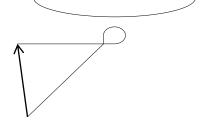


+:

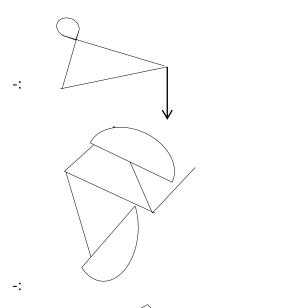


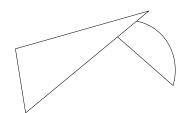
-:




I:

S: Какой из графов является простым?


+:


I:

S: Какой из графов является простым?

+:

-: I:

S: ... Γ называется пара множеств (V, E), где V — множество вершин, E — множество ребер.

- +: графом
- -: группой
- -: моноидом
- -: алгеброй

I:

- S: Две вершины a и b графа называются ..., если множество $\{a,b\}$ является ребром.
- -: не смежными
- +: смежными
- -: инцидентными
- -: не инцидентными

Ţ٠

- S: Ребро, на котором указано направление называют ...
- -: покрытием
- +: дугой

- -: петлей
- -: долей

I:

- S: Несколько ребер графа, имеющие одну иу же пару граничных вершин называются ...
- +: кратными ребрами
- -: дугами
- -: петлями
- -: долями

I:

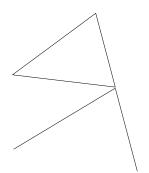
- S: Граф кенигсбергских мостов является:
- -: простым графом
- -: псевдографом
- +: мультиграфом
- -: орграфом

I:

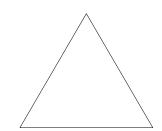
- S: Мультиграф представляет собой граф:
- +: с кратными ребрами без петель
- -: без петель и кратных ребер
- -: с петлями
- -: без кратных ребер

I:

- S: ... называют граф, содержащий кратные ребра без петель
- +: мультиграфом
- -: псевдографом
- -: пустым графом
- -: простым графом


I:

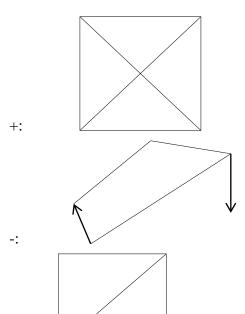
- S: Граф G = (V, E) является ориентированным, если его ребра являются:
- -: кратными
- +: дугами
- -: петлями
- -: неориентированными
- I: T3 № 60
- S: Граф G = (V, E) является неориентированным, если его ребра являются:
- +: неориентированными
- -: кратными
- -: дугами
- -: петлями

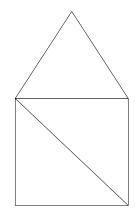

I:

S: Какой из графов является полным?

:

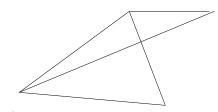
-:


+:



-:

I:


S: Какой из графов является полным?

-: I:

S: Сколько ребер нужно провести, чтобы достроить граф до полного?

+: 1

-: 2

-: 3

-: 4

I:

S: Сколько ребер нужно провести, чтобы достроить граф до полного?

-: 1

+: 2

-: 3

-: 4

I:

S: Полный граф с 7 вершинами содержит ... ребер

-: 20

+: 21

-: 14

-: 28

I:

S: Полный граф с 10 вершинами содержит ... ребер

-: 20

-: 50

+: 45

-: 100

I:

S: Число ребер полного графа с n вершинами равно:

$$-: \frac{n(n-2)}{2}$$

$$- : \frac{(n-1)(n-2)}{2}$$

$$+: \frac{n(n-1)}{2}$$

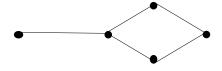
$$-: \frac{n(n+1)}{2}$$

I:

S: Полный граф после удаления одного из ребер будет:

+: полным графом

-: графом с изолированными вершинами


-: графом с висячими вершинами

-: графом с меньшим числом вершин

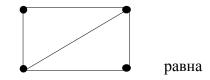
V3: Степень вершины графа. Теоремы о степенях вершин.

I:

S: Сумма степеней вершин графа

равна

-: 2


+: 10

-: 7

-: 9

I:

S: Сумма степеней вершин графа

+: 10

-: 8

-: 7

-: 9

I:

S: Вершина v является изолированной, если:

 $-: \deg v > 0$

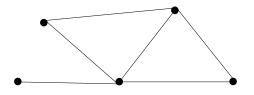
 $-: \deg v = 1$

 $+: \deg v = 0$

```
-: \deg v \neq 0
I:
S: Вершина v является висячей, если:
-: \deg v > 0
+: \deg v = 1
-: \deg v = 0
-: degv ≠ 0
I:
S: Степень изолированной вершины равна:
+: 0
-: 2
-: 3
I:
S: Степень висячей вершины равна:
+: 1
-: 0
-: 2
I:
S: Сумма отрицательных степеней вершин орграфа
                      равна:
-: 5
+: 6
-: 7
-: 8
V1: top
V2: 2 рейтинговая точка
V3: Матрица смежности графа
S: Матрица смежности неориентированного (p,q) - графа является:
+: симметрической
-: прямоугольной размера (p \times q)
-: квадратной порядка q
-: диагональной
I:
S: Матрица инцидентности ориентированного (p,q) графа является матрицей у которой
элемент b_{ij} определяется условием:
b_{ij} = 0 , если ребро e_j заходит в вершину v_i
```

 $+: b_{ij} = 1$, если ребро e_i выходит из вершины v_i

```
-: b_{\rm ij} \neq -1 при i \neq j
_{	ext{-: }b_{	ext{ij}}\,=\,-1} при i=j
S: В матрице инцидентности неориентированного (p,q)– графа элемент b_{ij} определяется
равенством:
-: b_{ij}=-1, если i \neq j
+: b_{ij} = 1, если ребро e_i инцидентно вершине v_i
-: b_{ij} = 0 при i = j
-: b_{ij} \neq 0 при (v, w) \in E \Leftrightarrow (\phi v, \phi w) \in E'
I:
S: В матрице смежности ориентированного (p,q) – графа элемент a_{ij} равен:
-: 0 при i ≠ j
+: числу дуг направленных от вершины v_i к вершине v_i
-: 1 при i ≠ j
-: -1 при i ≠ j
V1: top
V2: 2 рейтинговая точка
V3: Изоморфизм графов
I:
S: Если графы G(V, E) и G'(V', E') изоморфны, то:
+: |V| = |V'|
-: не обязательно, чтобы |E| = |E'|
-: не обязательно |V| = |V'|
-: G и G' имеют одинаковый вид
I:
S:
Графы G:
                                            являются:
-: изоморфными, т.к. |V| = |V'|
+: не изоморфными, т.к. |E| \neq |E'|
-: одинаковыми по своим свойствам
I:
S: Если G_1 \sim G_2 и G_2 \sim G_3, то:
+: G_1 \sim G_3
-: G_1 = G_3
-: G<sub>1</sub> не изоморфен G<sub>3</sub>
-: G_1 является подграфом графа G_3
```


S: Граф G, содержащий простой остовный цикл называется

+: гамильтоновым

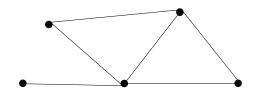
-: остовным

```
-: эйлеровым
-: мостом
V1: top
V2: 2 рейтинговая точка
V3: Маршруты, связность и степень графа.
I:
S: Связность несвязного графа равна
-:2
+: 0
I:
S: Полный граф после удаления одного ребра будет:
-: полным графом
-: не связным графом
+: связным графом
-: графом без циклов
I:
S: Маршрут называется цепью, если ....
-: он состоит из n вершин
-: он состоит из n ребер
+: все его ребра различны
-: он содержит кратные ребра
I:
S: Маршрут называется простой цепью, если ...
+: все его вершины различны
-: он содержит кратные ребра
-: он содержит петлю
-: он содержит всего 2 вершины
I:
S: Граф G называется ..., если любая пара его вершин соединена простой цепью
+: связным
-: неориентированным
-: орграфом
-: несвязным
S: Длина кратчайшей простой цепи, соединяющей две вершины графа называется ...
-: дугой
-: диаметром
+: расстоянием
-: обхватом
I:
```

S: Простой цепью в графе

будет

-: $v_1v_2v_5v_4v_2v_3$


 $-: v_1 v_2 v_5 v_2 v_3$

 $-: v_2 v_4 v_5 v_2$

+: $v_1v_2v_5v_4$

I:

S: Простым циклом в графе

будет

 $-:v_1v_2v_5v_2v_3$

 $-: v_1v_2v_5v_4v_2v_3$

 $+: v_2 v_4 v_5 v_2$

I:

S: Число ребер, инцидентных вершине v называется

-: расстоянием

-: окружением

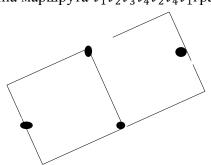
+: ее степенью

-: обхватом

I:

S: Длина маршрута равна

-: количеству вершин

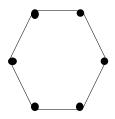

-: количеству петель

+: количеству ребер

-: единице

I:

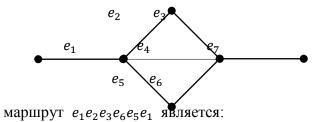
S: Длина маршрута $v_1v_2v_3v_4v_2v_4v_1$ графа



равна

- -: 4
- -: 3
- +: 6
- -: 2

I:


S: Длина маршрута $v_1v_2v_3v_4v_1v_6v_5v_4$ графа

равна

- -: 4
- -: 3
- +: 7
- -: 5
- I:

S: В графе

+: циклом

- -: простым циклом
- -: цепью
- -: простой цепью

I:

- S: Эйлеровый цикл содержит:
- +: все ребра графа
- -: не все ребра графа
- -: все вершины графа
- -: вершины нечетной степени

V1: top

V2: 3 рейтинговая точка

V3: Деревья, их свойства. Число ребер дерева.

I:

```
S: Деревом называется связный граф, не содержащий ...
-: дуг
-: петель
-: ребер
+: циклов
I:
S: Любой граф без циклов называется ...
-: полным
+: лесом
-: мультиграфом
-: псевдографом
I:
S: Любой граф без ... называется лесом.
-: дуг
-: петель
-: ребер
+: циклов
I:
S: Деревом называется....граф, не содержащий циклов
+: связный
-: полный
-: ориентированный
-: неориентированный
I:
S: Связный граф, не содержащий циклов, называется
-: лесом
-: регулярным
-: полным
+: деревом
I:
S: Дерево с 5 вершинами имеет .... ребер
-: 2
-: 3
+:4
-:5
I:
S: Дерево с 3 вершинами имеет .... ребер
+: 2
-: 3
-:4
-:5
I:
S: Связный граф с 10 вершинами и ...рёбрами является деревом
-: 8
-: 10
```

+: 9

-: 7 I: S: Связный граф с 12 вершинами и ...рёбрами является деревом -: 9 -: 10 +: 11

V1: 3 рейтинговая точка

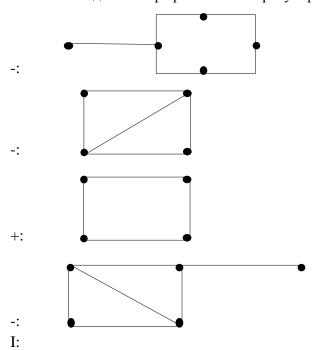
V2: Виды графов. Реберные, регулярные, реберно регулярные и сильно регулярные графы.

I:

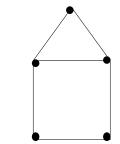
-: 12

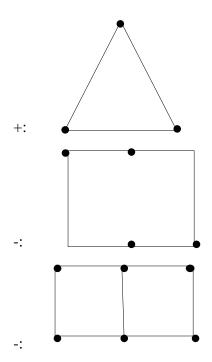
S: Число вершин в [a] называется ... вершины a и обозначается k_a .

: окрестностью


-: областью

-: порядком


+: степенью


I:

S: Какой из данных графов является регулярным?

S: Какой из данных графов является регулярным

I:

- S: Граф называется ..., если любая пара вершин смежна
- -: пустым
- +: полным
- -: реберным
- -: плоским

I:

- S: Граф, не содержащий ребер, называется ...
- -: полным
- -: регулярным
- +: пустым
- -: реберным

I:

- S: Граф, в котором все вершины имеют одну и ту же степень, называется
- -: полным
- -: пустым
- -: реберным
- +: регулярным

I:

S: Пусть в графе есть последовательность вершин, в которой соседние вершины смежны.

Тогда путь, в котором начальная и конечная точки совпадают, называется

- +: циклом
- -: петлей
- -: деревом
- -: лесом

I:

S: Граф Петерсена имеет вид

S: Граф, содержащий как ребра, так и дуги называется

- -: ориентированным
- -: неориентированным
- +: смешанным
- -: простым

I:

- S: Граф, все ребра которого являются дугами называется
- +: ориентированным
- -: неориентированным
- -: смешанным
- -: простым

I:

- S: Ребро, соединяющее одну и ту же вершину с самой собой, называется
- -: циклом
- +: петлей
- -: дугой
- -: ориентированным

I:

- S: Граф без петель и кратных ребер называется
- -: смешанным

```
+: простым
-: псевдографом
S: Граф без петель, но с кратными ребрами называется
-: смешанным
+: мультиграфом
-: псевдографом
-: простым
I:
S: Граф, содержащий как кратные ребра, так и петли называется
-: смешанным
-: мультиграфом
+: псевдографом
-: простым
I:
S: Граф, в котором любая пара вершин соединенное только одним ребром называется
+: полным
-: смешанным
-: орграфом
-: простым
I:
S: Граф, степени вершин которого равны между собой, называется
-: полным
-: простым
-: смешанным
+: регулярным
I:
S: Двудольный граф, в котором две вершины из различных долей соединены ребром,
называется
-: регулярным
+: полным двудольным
-: смешанным
-: псевдографом
I:
S: Граф называется ..., если он расположен в одной плоскости, и его ребра пересекаются
только в вершинах графа
+: плоским
-: эйлеровым
-: планарным
-: гамильтоновым
I:
S: Цикл, содержащий все ребра графа, называется
+: эйлеровым
-: простым
-: полным
```

-: мультиграфом

```
-: гамильтоновым
I:
S: Цикл, проходящий через каждую вершину графа, называется
-: эйлеровым
-: простым
-: полным
+: гамильтоновым
I:
S: Связный граф, не содержащий циклов, называется
+: деревом
-: двудольным
-: лесом
-: регулярным
V1: 3 рейтинговая точка
V2: Автоморфизмы графов.
I:
S: Для автоморфизма g графа\Gamma через \alpha_i(g) есть число пар вершин (u,u^g) таких, что
d(u, u^g) = ...
+: i
-:3
-: 0
-: 1
I:
S: Для автоморфизма g графа\Gamma... есть множество вершин u таких, что u=u^g.
-: Aut(g)
+:Fix(g)
-: \mathfrak{I}(g)
-: Ker(g)
I:
S: Изоморфизм графа на себя называется ... графаГ.
-: гомоморфизмом
-: эндоморфизмом
-: голоморфом
+: автоморфизмом
I:
S: Множество всех автоморфизмов графа относительно операции умножения подстановок
является ...
-: моноидом, но не группой
-: полугруппой, но не моноидом
+: группой
-: группоидом, но не полугруппо
```

I:

- S: Каждая конечная группа изоморфна группе ... некоторого графа.
- -: гомоморфизмов
- -: эндоморфизмов
- -: голоморфов
- +: автоморфизмо

I:

- S: Множество всех ... графа относительно операции умножения подстановок является группой.
- -: гомоморфизмов
- +: автоморфизмов
- -: эндоморфизмов
- -: голоморфов

I:

- $S:\dots$ графа на себя называется автоморфизмом графа $\Gamma.$
- -: гомоморфизм
- -: эндоморфизм
- -: голоморф
- +: изоморфизм

I:

- S: Всякий автоморфизм графа Γ является ... дополнительного графа $\overline{\Gamma}$.
- +: автоморфизмом
- -: гомоморфизмом
- -: эндоморфизмом
- -: голоморфом

Критерии формирования оценок по тестовым заданиям:

По итогам выполнения тестовых заданий оценка производится по пятибалльной шкале. При правильных ответах на:

- 89-100% заданий «5» (баллов);
- 70-88% заданий «4» баллов);
- 50-69% заданий «3» (балла);
- 30-49% заданий «2» (балла):
- 10-29% заданий «1» (балл);
- менее 10% заданий «0» (баллов).

5.5. Оценочные материалы для промежуточной аттестации.

ВОПРОСЫ, ВЫНОСИМЫЕ НА ЭКЗАМЕН (контролируемые компетенции ПКС - 3):

- 1. Основные понятия теории графов.
- 2. Типы графов. Примеры.
- 3. Теоремы о степенях вершин неориентированного графа.
- 4. Теоремы о степенях вершин орграфа.
- 5. Теорема о числе ребер полного графа.
- 6. Подграфы. Примеры.
- 7. Операции над графами.

- 8. Матрица смежности и инцидентности графа. Пример.
- 9. Матрица достижимости и Кирхгофа. Пример.
- 10. Изоморфизм графов. Свойства.
- 11. Ранг и спектр графа. Самодополнительный и коспектральный графы. Теорема о числе неизоморфных графов (без доказательства).
- 12. Маршруты, цепи и циклы. Пример.
- 13. Связность. Компоненты связности.
- 14. Метрические характеристики графа. Пример.
- 15. Эйлеровы графы. Теорема Эйлера.
- 16. Гамильтоновы графы. Теоремы (без доказательства).
- 17. Деревья. Теорема о висячих вершинах дерева.
- 18. Деревья. Теорема о числе ребер дерева. Следствия.
- 19. Остов. Дерево, покрывающее граф. Теорема.
- 20. Теорема Кэли о числе помеченных деревьев.
- 21. Плоские и планарные графы.
- 22. Регулярные, реберно регулярные и сильно регулярные графы.
- 23. Сильно регулярные графы без треугольников.
- 24. Графы Петерсена, Шрикханде, Клебша, Шлефли, три графа Чанга и их основные характеристики
- 25. Частичная геометрия.
- 26. Хорошие и почти хорошие пары и тройки вершин в реберно регулярных графах
- 27. Автоморфизмы сильно регулярного графа с параметрами (76, 35, 18, 14)
- 28. Автоморфизмы сильно регулярного графа с параметрами (64,35,18,20)
- 29. Автоморфизмы сильно регулярного графа с параметрами (95, 40, 12, 20)
- 30. Автоморфизмы сильно регулярного графа с параметрами (96, 45, 24, 18)

Методические рекомендации по подготовке и процедуре осуществления контроля выполнения

Подготовка к промежуточной аттестации заключается в изучении и тщательной проработке обучающимся учебного материала дисциплины с учетом рекомендованного преподавателем учебно-методического обеспечения. Для обеспечения полноты ответа на вопросы и лучшего запоминания рекомендуется составлять план ответа на каждый вопрос.

Критерии формирования оценок по промежуточной аттестации:

- 26-30 баллов получают обучающиеся, которые свободно ориентируются в материале и отвечают без затруднений. Обучающийся способен к выполнению сложных заданий, постановке целей и выборе путей их реализации. Работа выполнена полностью без ошибок, решено 100% заданий;
- 21-25 баллов получают обучающиеся, которые относительно полно ориентируются в материале, отвечают без затруднений, допускают незначительное количество ошибок. Обучающийся способен к выполнению сложных заданий. Работа выполнена полностью, но имеются не более одной негрубой ошибки и одного недочета, не более трех недочетов. Допускаются незначительные неточности при решении задач, решено 70% заданий;

16-20 баллов – получают обучающиеся, у которых недостаточно высок уровень владения материалом. В процессе ответа на экзамене допускаются ошибки и затруднения при изложении материала. Обучающийся правильно выполнил не менее 2/3 всей работы

или допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой. Обучающийся затрудняется с правильной оценкой предложенной задачи, дает неполный ответ, решено 55% заданий;

0-15 баллов – получают обучающиеся, которые допускают значительные ошибки. Обучающийся имеет лишь начальную степень ориентации в материале. В работе число ошибок и недочетов превысило норму для оценки 3 или правильно выполнено менее 2/3 всей работы. Обучающийся дает неверную оценку ситуации, решено менее 50% заданий.

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Кабардино-Балкарский государственный университет им. Х.М. Бербекова» (КБГУ)

Кафедра— Алгебры и дифференциальных уравнений **Дисциплина** — Теория графов и ее приложения **Направление подготовки** — 01.05.01 Фундаментальные математика и механика, 5 курс

Экзаменапионный билет №1

- 1. Плоские и планарные графы.
- 2. Маршруты, цепи и циклы. Пример.
- 3. Граф задан множеством вершин $V = \{a, b, c, d, e, f\}$ и множеством ребер $E = \{(a, c), (a, f), (b, c), (c, d), (d, f)\}$. Нарисуйте этот граф, постройте для него матрицы смежности и инцидентности, списки смежности.

к.фм.н., доцент	М.С. Нирова
зав. кафедрой А и ДУ	
Руководитель ОПОП,	