Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Кабардино-Балкарский государственный университет им. Х.М. Бербекова» (КБГУ)

ИНСТИТУТ ФИЗИКИ И МАТЕМАТИКИ КАФЕДРА АЛГЕБРЫ И ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

утверждаю

мнети Руководитель ОПОП

матики О.А.Молоканов

«16 genceoful 2024 r

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ (ОЦЕНОЧНЫХ МАТЕРИАЛОВ) ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

«Аналитическая и линейная алгебра»

Программа специалитета
12.05.01 Электронные и оптико-электронные приборы и системы специального назначения

Специализация Оптико-электронные информационно-измерительные приборы и системы

> Форма обучения **Очная**

Квалификация (степень выпускника) **инженер**

Нальчик 2024

СОДЕРЖАНИЕ

- 1. Перечень компетенций и этапы их формирования
- 2. Методические материалы и типовые контрольные задания, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы
- 3. Перечень контрольных заданий и иных материалов, необходимых для оценки знаний, умений, навыков и опыта деятельности

1. Перечень компетенций и этапы их формирования

Карта компетенции

Код и название компетенций выпускника:

ОПК-1 - способен выявлять естественнонаучную сущность проблем и применять методы математического анализа и моделирования в инженерной деятельности, связанной с проектированием, конструированием и сопровождением производства оптических и оптико-электронных приборов и комплексов, эксплуатацией и организацией функционирования электронных и оптико-электронных систем специального назначения.

Код и название индикатора достижений компетенций выпускника

ОПК-1.1 - способен выявлять естественнонаучную сущность проблем, возникающих в инженерной деятельности, связанной с проектированием, конструированием и сопровождением производства оптических и оптико-электронных приборов и комплексов, эксплуатацией и организацией функционирования электронных и оптико-электронных систем специального назначения.

Тип компетенции: общепрофессиональная компетенция выпускника образовательной программы по специальности 12.05.01 «Электронные и оптикоэлектронные приборы и системы специального назначения», уровень ВО – специалист.

1.1. Этапы формирования компетенций и средства оценивания

Результаты обучения	Основные показатели оценки	Вид оценочного средства
(компетенции)	результатов обучения	вид оцено тного средства
Код и название	Знать методы математики,	Оценочные материалы для
компетенций	математического	практических занятий
выпускника	анализа и моделирования и их	Оценочные материалы для
ОПК-1 - способен	применение в инженерной	контрольной работы
выявлять	деятельности, связанной с	Типовые тестовые задания
естественнонаучную	проектированием, конструированием	Оценочные материалы для
сущность проблем и	и сопровождением производства	проведения коллоквиума
применять методы	оптических и оптико-электронных	Типовые оценочные
математического анализа	приборов.	материалы к экзамену
и моделирования в	Уметь применять знания	Оценочные материалы для
инженерной	естественных наук и	практических занятий
деятельности, связанной	общеинженерные	Оценочные материалы для
с проектированием,	знания в инженерной деятельности,	контрольной работы
конструированием и	связанной с проектированием, конструированием и	Типовые тестовые задания
сопровождением	сопровождением производства	Оценочные материалы для
производства оптических	оптических и оптико- электронных	проведения коллоквиума
и оптико-электронных	приборов и комплексов,	Типовые оценочные
приборов и комплексов,	эксплуатацией и организацией	материалы к экзамену
эксплуатацией и	функционирования электронных и	
организацией	оптико-электронных систем специального назначения.	

функционирования	Владеть навыками применения	Оценочные материалы для
электронных и оптико-	методов математического анализа и	практических занятий
электронных систем	моделирования для решения	Оценочные материалы для
специального	проблем, возникающих в	контрольной работы
назначения	инженерной деятельности, связанной	Типовые тестовые задания
	с проектированием,	Оценочные материалы для
	конструированием и	проведения коллоквиума
	сопровождением производства	Типовые оценочные
	оптических и оптико-электронных	материалы к экзамену
	приборов и комплексов,	
	эксплуатацией и организацией	
	функционирования электронных и	
	оптико-электронных систем	
	специального назначения.	

1.2. Критерии формирования оценок на различных этапах их формирования Текущий и рубежный контроль

Оценка регулярности, своевременности и качества выполнения обучающимся учебной работы по изучению дисциплины в течении периода изучения дисциплины (сумма — не более 70 баллов). Баллы, характеризующие успеваемость обучающихся по дисциплине, набираются им в течение всего периода обучения за изучение отдельных тем и выполнения отдельных видов работ. Общий балл складывается в результате проведения текущего и рубежного контроля по дисциплине.

Этап (уровень)	Первый этап	Второй этап	Третий этап	
	(уровень)	(уровень)	(уровень)	
Баллы	36-50 баллов	51-60 баллов	61-70 баллов	
Характеристика	Полное или частичное	Полное или	Полное посещение	
	посещение аудиторных	частичное	аудиторных	
	занятий. Частичное	посещение	занятий.	
	выполнение домашнего	аудиторных	Полное выполнение	
	задания. Частичное	занятий.	домашнего задания,	
	выполнение заданий	Полное выполнение	заданий контроль-	
	контрольных работ,	домашнего задания.	ных работ.	
	тестовых заданий на	Выполнение	Выполнение	
	оценку	заданий на	заданий на	
	«удовлетворительно».	коллоквиуме на	коллоквиуме на	
		оценку «хорошо».	оценку «отлично».	

На первом (начальном) этапе формирования компетенции формируются знания, умения и навыки, составляющие базовую основу компетенции, без которой невозможно ее дальнейшее развитие. Обучающийся воспроизводит термины, факты, методы, понятия, принципы и правила; решает учебные задачи по образцу.

На втором (основном) этапе формирования компетенции приобретается опыт деятельности, когда отдельные компоненты компетенции начинают «работать» в

комплексе и происходит выработка индивидуального алгоритма продуктивных действий, направленных на достижение поставленной цели.

На этом этапе обучающийся осваивает аналитические действия с предметными знаниями по конкретной дисциплине, способен самостоятельно решать учебные задачи, внося коррективы в алгоритм действий, осуществляя координирование хода работы, переносит знания и умения на новые условия.

Третий (завершающий) этап — это овладение компетенцией. Обучающийся способен использовать знания, умения, навыки при решении задач повышенной сложности и в нестандартных условиях. По результатам этого этапа обучающийся демонстрирует итоговый уровень сформированности компетенции.

Промежуточная аттестация (зачет)

Семестр	Шкала о	оценивания
	Не зачтено (36-60)	Зачтено (61-70)
1	Студент имеет 36-60 баллов по итогам текущего и рубежного контроля, на зачёте не ответил ни на один вопрос.	Студент имеет 36-45 баллов по итогам текущего и рубежного контроля, на зачете представил полный ответ на один вопрос и частично (полностью) ответил на второй. Студент имеет 46-60 баллов по итогам текущего и рубежного контроля, на зачете дал полный ответ на один вопрос или частично ответил на оба вопроса. Студенту, имеющему 61-70 баллов по итогам текущего и рубежного контроля, выставляется отметка «зачтено» без сдачи зачёта.

2. Методические материалы и типовые контрольные задания, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Примерный перечень оценочных средств

No	Наименование	Краткая характеристика оценочного	Представление
	оценочного	средства	оценочного средства
	средства		в фонде
1.	Коллоквиум	Средство контроля усвоения учебного	Вопросы по
		материала темы, раздела или разделов	темам/разделам
		дисциплины, организованное как учебное	дисциплины
		занятие в виде собеседования	
		преподавателя с обучающимися.	

2.	Тест	Система стандартизированных заданий, позволяющая автоматизировать процедуру измерения уровня знаний и умений обучающегося.	Фонд тестовых заданий
3.	Контрольная работа	Средство проверки умений применять полученные знания для решения задач определенного типа по теме или разделу	Комплект контрольных заданий по вариантам

3. Перечень контрольных заданий и иных материалов, необходимых для оценки знаний, умений, навыков и опыта деятельности

3.1. Вопросы для коллоквиумов (контролируемая компетенция ОПК-1)

Коллоквиум — собеседование преподавателя с обучающимся с целью контроля глубины усвоения теоретического материала, изучения рекомендованной литературы. Коллоквиум — это форма контроля, вид помощи обучающимся и метод стимулирования их самостоятельной работы. Коллоквиум охватывает только раздел или тему изучаемой дисциплины.

Вопросы для 1 коллоквиума (контролируемая компетенция ОПК-1)

- 1. Определители II и III порядков. Решение СЛУ методом Крамера. Метод Гаусса.
- 2. Векторы. Проекция вектора на ось. Направляющие косинусы.
- 3. Векторы. Линейные операции над векторами. Свойства линейных операций.
- 4. Скалярное, векторное и смешанное произведение векторов. Свойства.
- 5. Компланарные векторы. Условие компланарности трех векторов. Вычисление объема пирамиды и параллелепипеда.
- 6. Общее уравнение прямой на плоскости. Неполные уравнения.
- 7. Расстояние от точки до прямой на плоскости. Отклонение точки от прямой.
- 8. Уравнение прямой с угловым коэффициентом.
- 9. Взаимное расположение двух прямых на плоскости.
- 10. Уравнение прямой в отрезках.
- 11. Нормальное уравнение прямой на плоскости
- 12. Уравнение плоскости, проходящей через три заданные точки.
- 13. Общее уравнение плоскости. Неполные уравнения. Уравнение плоскости в отрезках.

Вопросы для 2 коллоквиума (контролируемая компетенция ОПК-1)

- 1. Уравнение плоскости, проходящей через три заданные точки.
- 2. Уравнение плоскости, проходящей через точку, параллельно двум заданным векторам.
- 3. Взаимное расположение двух плоскостей.
- 4. Нормальное уравнение плоскости.
- 5. Уравнение плоскости, проходящей через точку, перпендикулярна заданному вектору.
- 6. Расстояние от точки до плоскости. Отклонение точки от плоскости.
- 7. Уравнение прямой, проходящей через данную точку в данном направлении.

- 8. Взаимное расположение двух прямых в пространстве. Условие перпендикулярности и параллельности двух прямых.
- 9. Параметрические уравнения прямой в пространстве.
- 10. Гипербола. Каноническое уравнение гиперболы.
- 11. Линии второго порядка Перестановки и подстановки.
- 12. Поверхности второго порядка.

Вопросы для 3 коллоквиума (контролируемая компетенция ОПК-1)

- 1. Определители *n* го порядка. Свойства.
- 2. Миноры и алгебраические дополнения.
- 3. Вычисление определителя n го порядка. Теорема Лапласа.
- 4. Решение систем линейных уравнений. Метод Гаусса.
- 5. Системы линейных уравнений крамеровского типа. Правило Крамера.
- 6. Матрицы и действия над матрицами. Свойства операций. Обратная матрица.
- 7. Решение систем линейных уравнений матричным способом.
- 8. Понятие п-мерного вектора. Операции над п-мерными векторами.
- 9. Определение арифметического п-мерного векторного пространства.
- 10. Линейная зависимость векторов. Свойства.
- 11. Базис и ранг системы векторов.
- 12. Ранг матрицы. Теорема о базисном миноре. Вычисление ранга матрицы.
- 13. Исследование систем линейных уравнений. Теорема Кронекера-Капелли.
- 14. Однородные системы. Свойства решений. ФСР.

3.2. Типовые тестовые задания по дисциплине «Аналитическая геометрия и линейная алгебра» (контролируемая компетенция ОПК-1):

```
I:
S:
Длина вектора <u>ā</u> = (1,2,2) равна
+: 3
-:
```

I: S:

-: 5

```
+: i + j - 3k

-: i + j + k

-: 2i + j + k

-: i + 2j + k
```

I: S:

)

+:			
et .			
	=		
-:			
I:			
S: Угол между векторами вычисляе +:	гся по формуло	e:	
T.			
	_		
4			
4			
4			
I: S: Условие коллинеарности трех вет +: Смешанное произведение равно 0 -: Скалярное произведение равно 0 -: Смешанное произведение равно 1)		
I: S: Из перечисленного верно: +:			
et .			
et			

S:	
+: (2,4,-3) -: (-2,0,-5) -: (2,0,5) -: (5,0,1)	
I: S:	
+:	
-1	
-:	
-;	
I: S:	
+:	
-:	
-:	
-1	
I:	
S:	
+: 0	
-: 3	
-: 3 -: 2 -: 1	
-: 1	
I:	
S:	

```
+: 4
-: 3
-: 2
-: 1
I:
S:
+: 6
-: 0
-: (0,2,4)
-: (1,1,1)
I:
S: В уравнении прямой y = -2x + 3 угловой коэффициент равен:
+: k = -2
-: k = -2/3
-: k = 2
-: k = 2/3
I:
S: Вычислить координаты середины отрезка AB, если A(3,-2), B(5,2)
+: (4,0)
-: (1,-2)
-: (4,-2)
-: (1,0)
I:
S: Вычислить площадь треугольника, если A(3,4), B(0,0), C(2,1)
+:
-:
I:
S: Найти расстояние от точки M(3, -2) до прямой 4x - 3y - 3 = 0
+: 3
-: 5/3
-: 3/5
-: -3
I:
S: Плоскость x + y - 5 = 0:
+: Параллельна оси OZ
-: Проходит через ось OZ
```

```
-: Проходит через ось ОХ
```

-: Проходит через начало координат

I:

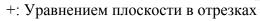
S: Отрезки, отсекаемые плоскостью 5x + y + 3z - 15 = 0 на осях координат, равны:

$$+: a = 3, b = 15, c = 5$$

$$-: a = 5, b = 1, c = 3$$

$$-: a = 3, b = 5, c = 5$$

$$-: a = 3, b = 15, c = 3$$


I:

S: Расстояние от M(2;0;-0,5) до плоскости 4x - 4y + 2z + 17 = 0 равно:

- + 4
- -: 17
- -: 2
- -: 6

I:

S:

- -: Общим уравнением плоскости
- -: Связкой плоскостей
- -: Нормальным уравнением плоскости

I:

S: Уравнение плоскости, проходящей через три точки A(1,1,1), B(1,2,2), C(0,2,1) имеет вид:

$$+: x + y - z + 1 = 0$$

$$-: x - y + z + 1 = 0$$

$$-: x + y + z + 1 = 0$$

I:

S:

+: 2

-: 5

-: 1

-: 3

I:

S:

+:

```
-:
I:
S: Расстояние между фокусами эллипса равно:
+: 2a
-: 2c
-: 2b
-: 2(a + b)
I:
S: Отношение фокусного расстояния эллипса к его большой оси называется ...эллипса
+: Эксцентриситетом
-: Большой полуосью
-: Директрисой
-: Радиусом
I:
S: Каноническое уравнение гиперболы имеет вид:
+:
I:
S:
+: (-a, 0), (a, 0)
-: (-c, 0), (c, 0)
-: (0, -c), (0, c)
-: (-a, b), (a, b)
I:
```

S: Геометрическое место точек на пло прямой называется:+: Параболой-: Гиперболой-: Окружностью	скости, равноудаленных от данной точки и данной
-: Эллипсом	
I: S:	
1.	
+:	
-:	
-:	
-:	
I:	
S:	
+: -6	
-:	
-:	
I: S:	
+: Совместна и неопределена -: Несовместна	

-: Совместна и определена

-: Несовместна и определена			
I: S: Определить число инверсий в пер +: 13 -: 15 -: 12 -: 14	рестановке 1,9,6,3,2	2,5,4,7,8	
I: I: - S: Число различных перестановок д +: 6 -: 2 -: 9 -: 8	лины 3 равно		
I: S:			
+: 6 -: 7 -: 5 -: 8			
I: S:			
+;			
-			

I:				
S: При перестановке строк определи	тепь 2.	-го порядка		
	110,110 2	то порядка.	• •	
+: меняет знак				
-: обращается в нуль				
-: не меняется				
. He memores				
I:				
S:				
b.				
		_		
+: -9				
-: 1				
-: -1				
1 ,				
-: 4				
I:				
S:				
. 10				
+: 19				
-: 18				
-: 2				
-: 0				
I:				
S:				
5.				
+:				
				_
-:				
-:				
-:				
I:				
S:				

+: 15

-: 14	
-: 0 -: 1	
-: 1	
I:	
S:	
+:	
-:	
-:	
-	
-:	
I:	
I: S·	
I: S:	
I: S:	
I: S:	
S:	
I: S: +:	
S:	
S: +:	
S:	
S: +:	
S: +:	
S: +: -:	
S: +:	
S: +: -:	
S: +: -: -:	
S: +: -:	
S: +: -: -:	
S: +: -: -:	

+:					
-:					
- :					
-:					
*					
I:					
S:					
+;					
-:					
-:					
=:					
I:					
S: Если существуют произведения А	Ви ВА, і	причем АВ	= ВА, то матрицы А и В называю		
		-	· •		
+: перестановочными					
_					
-: равными					
-: симметричными					
-: транспонированными					
I:					
S: Рангом матрицы А называется					
+: наивысший порядок отличного от	нуля ми	нора			
-: порядок отличного от нуля минора		=			
	• • •				
-: порядок матрицы А					

-: число линейно независимых столбцов

I: S: Матрица называется вырожденной, если ее определитель равен:						
+: 0						
-: 1 -> 1						
-:>1 -: ±1						
I: S:						
S:						
+:						
-:						
-:						
- :						
-						
I:						
S:						
+: 1						
-: 3						
-: 3 -: 2 -: 0						
-: 0						
I:						
S:						
+:						
-:						

Ţ.

-:

- S: Пусть дана неоднородная СЛУ. Обозначим через матрицу A, матрицу составленную из коэффициентов при неизвестных системы, а через \bar{A} расширенную матрицу. Пусть r ранг матрицы. Если r(A)=2, $r(\bar{A})=3$, то система...
- +: несовместна
- -: имеет единственное нулевое решение
- -: совместна
- -: определена

Методические рекомендации

Полный перечень тестовых заданий по дисциплине представлен в системе онлайнобучения на базе программного обеспечения Moodle со встроенной подсистемой тестирования КБГУ (http://open.kbsu.ru). Обучающийся, чтобы пройти тестирование, входит в систему open.kbsu.ru под своим логином и пароле, выбирает нужную дисциплину и проходит тестирование.

Критерии формирования оценок по тестовым заданиям:

- 5 баллов получают обучающиеся с правильным количеством ответов на тестовые вопросы. Выполнено 90 100 % предложенных тестовых заданий;
- 4 балла получают обучающиеся с правильным количеством ответов на тестовые вопросы 70-89 % от общего объема заданных тестовых заданий;
- 3 балла получают обучающиеся с правильным количеством ответов на тестовые вопросы 50 –69% от общего объема заданных тестовых заданий;
- 2 балла получают обучающиеся с правильным количеством ответов на тестовые вопросы менее 30-49 % от общего объема заданных тестовых заданий.
- 1 балл получают обучающиеся с правильным количеством ответов на тестовые вопросы менее 10-29 % от общего объема заданных тестовых заданий.
- 0 баллов получают обучающиеся с правильным количеством ответов на тестовые вопросы менее 10% от общего объема заданных тестовых вопросов.

3.3. Фонд теоретических заданий по дисциплине «Аналитическая геометрия и линейная алгебра» для оценки компетенций (ОПК-1)

Тема 1. Векторная алгебра.

- 1. Определители II и III порядков.
- 2. Решение СЛУ методом Крамера. Метод Гаусса. Векторы.
- 3. Линейные операции над векторами.
- 4. Скалярное произведение векторов. Свойства.
- 5. Векторное произведение векторов. Геометрический смысл векторного произведения.
- 6. Смешанное произведение векторов. Свойства. Геометрический смысл смешанного произведения.

Тема 2. Прямая в R^2 . Прямая и плоскость в пространстве.

7. Прямые в R^2 . Различные виды уравнения прямой на плоскости. Отклонение точки от прямой.

- 8. Прямая и плоскость в пространстве. Общее уравнение прямой и плоскости.
- 9. Общее уравнение плоскости в пространстве. Различные виды уравнения плоскости в пространстве. Отклонение точки от плоскости.
- 10. Взаимное расположение двух плоскостей, прямой и плоскости. Угол между прямыми, плоскостями, прямыми и плоскостями.

Тема 3. Линии второго порядка.

- 11. Кривые второго порядка. Канонические уравнения окружности, эллипса, гиперболы, параболы.
- 12. Эксцентриситет. Директриса. Асимптота.

Тема 4. Перестановки и подстановки. Определители *п*-го порядка.

- 13. Перестановки и подстановки. Четность. Инверсия, транспозиция. Умножение подстановок. Свойства. Декремент.
- 14. Определение определителя *n*-го порядка. Основные свойства.
- 15. Миноры и алгебраические дополнения. Теорема Лапласа.
- 16. Методы вычисления определителя.

Тема 5. Алгебра матриц.

- 17. Матрицы. Операции над матрицами. Свойства.
- 18. Теорема об определителе произведения матриц.
- 19. Обратная матрица. Условие обратимости. Формула обратной матрицы.
- 20. Матричный способ решения систем линейных уравнений.

Тема 6. Арифметическое векторное пространство. Исследование систем линейных уравнений.

- 21. Понятие *п*-мерного вектора. Операции над *п*-мерными векторами.
- 22. Определение арифметического *п*-мерного векторного пространства.
- 23. Линейная зависимость векторов. Свойства.
- 24. Базис и ранг системы векторов.
- 25. Ранг матрицы. Теорема о базисном миноре. Вычисление ранга матрицы.
- 26. Исследование систем линейных уравнений. Теорема Кронекера-Капелли.
- 27. Однородные системы. Свойства решений. ФСР.

Задачи

Тема 1. Векторная алгебра.

- 1. Вектора \bar{a} и \bar{b} взаимно перпендикулярны; вектор \bar{c} образует с ними углы, равные $\frac{\pi}{3}$. Зная, что $|\bar{a}| = 3e\partial$, $|\bar{b}| = 5e\partial$, $|\bar{c}| = 8e\partial$, вычислить $(3\bar{a} 2\bar{b}, \bar{b} + 3\bar{c})$.
- 2. Дано: $|\overline{a}|=1$ и $|\overline{b}|=2$ $\varphi=2\pi/3$. Найти $|[\overline{a},\overline{b}]|,|[\overline{a}+2\overline{b},-\overline{a}+3\overline{b}]|$.
- 3. Найти координаты вектора x = (2,3) в заданном базисе $e_1, e_2,$ если $e_1 = (1,1),$ $e_2 = (1,2)$
- 4. Разложить вектор $\bar{a} = (5,2,-1)$ по единичным векторам
- 5. Векторы a и b образуют угол $\varphi = \frac{\Pi}{2}$. Зная, что что |a| = 6, |b| = 5 вычислить [3a b, a 2b].
- 6. Докажите, что векторы $\overrightarrow{a}(10,11,2)$ и $\overrightarrow{b}(10,-10,5)$ отложенные из одной точки, можно взять в качестве ребер куба, и найдите третье ребро куба, исходящее из этой же точки.

- 7. Даны координаты вершин треугольной пирамиды SABC: A(4,0,1), B(5,-1,1), C(4,7,-5), S(7,5,2). Найти объем пирамиды, площадь основания ABC и высоту.
- 8. Определить точку N, с которой совпадает конец вектора $\overline{a} = (3;-1;4)$, если его начало совпадает с точкой M(1;2;3).
- 9. Даны два вектора $\overline{a} = (3;-2;6)$ и $\overline{b} = (-2;1;0)$. Определить проекции на координатные оси следующих векторов: 1) $\overline{a} + \overline{b}$, 2) $\overline{a} \overline{b}$.
- 10. Дано разложение вектора \overline{c} по базису $\overline{i}, \overline{j}, \overline{k}$: $\overline{c} = 16\overline{i} \overline{15j} + 12\overline{k}$. Определить разложение по этому же базису вектора \overline{a} , параллельного вектору \overline{c} и противоположного с ним направления, при условии, что $|\overline{a}| = 75$.
- 11. Найти площадь треугольника с вершинами A(1,2,0), B(3,2,1), C(-2,1,2).
- 12. Найти площадь параллелограмма, построенного на векторах $\overline{a} = (8,4,1), \ \overline{b} = (2,-2,1).$
- 13. Векторы \overline{a} и \overline{b} образуют угол 45°. Найти площадь треугольника, построенного на векторах $a-2\overline{b}$ и $3\overline{a}+2\overline{b}$, если $|\overline{a}|=|\overline{b}|=5$.
- 14. Проверить компланарны ли данные векторы:

a)
$$\overline{a} = (1,2,-2), \ \overline{b} = (1,-2,1), \ \overline{c} = (5,-2,-1);$$

$$\vec{a} = \vec{j} + \vec{k}$$
, $\vec{b} = \vec{j} - \vec{k}$, $\vec{c} = \vec{i}$.

- 15. Даны вершины пирамиды A(5,1,-4), B(1,2,-1), C(3,3,-4), S(2,2,2). Найти длину высоты, опущенной из вершины S на грань ABC.
- 16. Найти объем параллелепипеда, построенного на векторах $\overline{a}=(1,-2,1), \ \overline{b}=(3,2,1),$ $\overline{c}=(1,0,-1).$
- 17. Даны векторы $\overline{a} = (3,5,-1), \ \overline{b} = (0,-2,1), \ \overline{c} = (-2,2,3).$ Найти смешанное произведение $\overline{ab}\,\overline{c}$
- 18. Найти объем пирамиды с вершинами A(0,0,1), B(2,3,5), C(6,2,3), D(3,7,2).

Тема 2. Прямая в R^2 . Прямая и плоскость в пространстве.

- 1. На осях координат найти точки, каждая из которых равноудалена от точек A(1;1) и B(3;7).
- 2. Даны три вершины треугольника: A(3;-7), B(5;2), C(-1;0). Найти середины его сторон.
- 3. Вычислить длины медиан треугольника, зная координаты его вершины: A(3;-2), B(5;-2), C(-1;4).
- 4. Вычислить площадь параллелограмма, три вершины которого лежат в точках A(-2;3), B(4;-5), C(-3;1).
- 5. Даны вершины треугольника: A(4;6), b(-4;0), C(-1;4). Составить уравнения: 1) медианы, проведенной из вершины C; 2) высоты, опущенной из вершины A на сторону (BC).

- 6. При каком значении параметра \underline{a} прямые (3a+2)x+(1-4a)y+8=0 и (5a-2)x+(a+4)y-7=0 окажутся перпендикулярными друг к другу?
- 7. При каком значении параметра \underline{a} уравнения 3ax-8y+13=0 и (a+1)x-2ay-21=0 изображают параллельные прямые?
- 8. Из точек пересечения прямой 3x+5y-15=0 с осями координат восстановлены перпендикуляры к этой прямой. Найти их уравнения.
- 9. Найти «отрезки» отсекаемые на осях координат, следующими прямыми:

$$3x-2y+12=0$$
, $y=4x-2$, $y=-x+1.5x+2y+20=0$.

- 10. Определить площадь треугольника, заключенного между осями координат и прямой x+2v-6=0.
- 11. Определить угол между прямыми $\frac{x+1}{2} = \frac{y-3}{-1} = \frac{z}{-2}$ и $\frac{x+2}{1} = \frac{y+3}{2} = \frac{z}{-2}$
- 12. Найти нормальное уравнение плоскости 6x-7y+6z-33=0.
- 13. Вычислить расстояние между точками A(-2; -3) и B(6; 3).
- 14. Найти координаты точки M, делящей отрезок AB в отношении AM: MB = -3:2, если A(-2; 1) и B(3; 6).
- 15. Вычислить площадь треугольника, вершинами которого являются точки A(2; 0), B(5; 3) и C(2; 6).
- 16. Найти расстояние от точки A(4; 3; -2) до плоскости 3x y + 5z + 1 = 0.
- 17. Найти угловой коэффициент К и отрезок в, отсекаемый по оси Оу прямой 2x 3y = 6.
- 18. Составить уравнения прямой, проходящей через точку A(-2; 5) перпендикулярно прямой 2x y = 0.
- 19. Вычислить угол между прямыми $\begin{cases} 2x + y = 0 \\ y = 3x 4 \end{cases}$.
- 20. Написать уравнение плоскости, проходящей через начало координат и через две точки A(3;-2;1) и B(1;4;0).
- 21. Написать уравнение плоскости, параллельной оси OX и проходящей через две точки A(4;0;2) и B(5;1;7).
- 22. Вычислить угол между плоскостями 4x 5y + 3 = 0 и x 4y z + 9 = 0.
- 23. Составить уравнение плоскости, зная три ее точки A(1;-3;2), B(5;1;-4), C(2;0;3).
- 24. Составить параметрические уравнения прямой $\frac{x-2}{2} = \frac{y+4}{-1} = \frac{z}{-2}$.
- 25. Привести к каноническому виду уравнения прямой $\begin{cases} 2x 3y 3z 9 = 0 \\ x 2y + z + 3 = 0. \end{cases}$

26. Написать уравнения ребер пирамиды, вершины которой даны своими координатами: A(0;0;2), B(4;0;5), C(5;3;0), D(-;4;-2).

Тема 3. Линии второго порядка

1. Дан эллипс $\frac{x^2}{25} + \frac{y^2}{9} = 1$. Найти фокусы эллипса, e, директрисы, большую полуось,

малую полуось.

- 2. В параболе $(v+3)^2=1/4(x-5)^2$ найти величину параметра p и координаты вершин.
- 3. На эллипсе $9x^2 + 25y^2 = 3600$ найти точки, расстояние которой от правого фокуса в четыре раза больше расстояния от левого фокуса.
- 4. Найти точки пересечения эллипса $x^2 + 3y^2 = 36$ с прямой 2x y 9 = 0.
- гиперболы, проходящей 5 Составить уравнение через фокусы эллипса $144x^2 + 169y^2 = 24336$ и имеющей фокусы в вершинах этого эллипса.
- 6. На гиперболе $16 x^2 49 y^2 = 784$ найти точки, которые были бы в три раза ближе к одной асимптоте, чем к другой.
- 7. Через точку A (2;1) провести такую хорду параболы $y^2 = 4x$, которая делилась бы в данной точке пополам.
- 8. Дана парабола $y^2 = 4x$, найти точки пересечения данной параболы с прямой x + 3y + 9 = 0.
- 9. На эллипсе, один из фокусов которого имеет координаты (3,0), взята M(4,2,4). Найти расстояние этой точки до соответствующей директрисы, зная, что центр эллипса совпадает с началом координат.
- 10. На параболе $y^2 = 4.5x$ взята точка M(x, y), находящаяся от директрисы на расстоянии d=9, 125ed. Вычислить расстояние от этой точки до вершины параболы.
- 11. Через точку A(3;1) провести хорду гиперболы $x^2 4y^2 = 4$, делящуюся пополам в этой точке.

Тема 4. Перестановки и подстановки. Определители *п*-го порядка.

1. Найти подстановку X из равенства AXB = C

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 3 & 2 & 1 & 6 & 5 & 4 \end{pmatrix},$$

$$B = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 1 & 2 & 7 & 4 & 5 & 6 \end{pmatrix},$$

$$C = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 1 & 2 & 7 & 4 & 5 & 6 \end{pmatrix},$$
2. Определить число инверсий в перестановке 1, 9, 6, 3, 2, 5, 4, 7, 8.

- 3. Определить четность подстановки $C = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 1 & 3 & 6 & 4 & 7 & 2 \end{pmatrix}$.

 4. Вычислить определитель $\begin{vmatrix} 2 & 6 & 4 & 3 \\ 5 & 2 & -1 & -3 \\ 2 & -3 & 5 & -3 \\ 4 & 1 & 6 & 2 \end{vmatrix}$.

5. Вычислить определитель
$$\begin{bmatrix} x & a & b & 0 & c \\ 0 & y & 0 & 0 & d \\ 0 & e & z & 0 & f \\ g & h & k & u & l \\ 0 & 0 & 0 & 0 & v \end{bmatrix}.$$

- 6.Выбрать значения i и k так, чтобы произведение $a_{62}a_{i5}a_{33}a_{k4}a_{46}a_{21}$ входило в определитель 6-го порядка со знаком минус.
- 7. Вычислить определитель 3-го порядка $\begin{vmatrix} b & 3 & 1 \\ 1 & 0 & 0 \end{vmatrix}$.
- 8. Найти алгебраическое дополнение к элементу a_{12} в определителе $\begin{vmatrix} a & 1 & 2 \\ 1 & 3 & 0 \\ b & 5 & c \end{vmatrix}$.

9. Найти
$$A^{150}$$
, где $A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 5 & 4 & 6 & 9 & 7 & 1 & 10 & 8 & 2 \end{pmatrix}$.
10. В следующих подстановках перейти от записи в циклах к записи двумя строками:

- - a) (1 5)(2 3 4).
 - $6) (7 \quad 5 \quad 3 \quad 1)(2 \quad 4 \quad 6)(8)(9).$
 - B) $(1 \ 2)(3 \ 4) \dots (2n-1 \ 2n)$.
- 11. Пользуясь теоремой Лапласа, вычислить определитель $\begin{bmatrix} 2 & 0 & 0 & 3 \\ 5 & 2 & -1 & -3 \\ 2 & -3 & 5 & -3 \\ 4 & 0 & 0 & 2 \\ 2 & 1 & 0 & 0 \\ 5 & 2 & -1 & -3 \\ 2 & -3 & 5 & -3 \end{bmatrix}$ 12. Пользуясь теоремой Лапласа, вычислить определитель $\begin{bmatrix} 2 & 0 & 0 & 3 \\ 5 & 2 & -1 & -3 \\ 2 & 1 & 0 & 0 \\ 5 & 2 & -1 & -3 \\ 2 & -3 & 5 & -3 \end{bmatrix}$

Тема 5. Алгебра матриц.

1. Найти значение матричного многочлена

$$f(A)$$
: $f(x) = 3x^2 + 2x + 5$, $A = \begin{pmatrix} 2 & -3 \\ 0 & 4 \end{pmatrix}$.

2. Вычислить 5A - 3B + 2C,

где
$$A = \begin{pmatrix} 1 & -2 & 0 \\ 3 & 5 & 1 \\ -1 & 2 & 4 \end{pmatrix}$$
, $B = \begin{pmatrix} 5 & 1 & -2 \\ -3 & 2 & 7 \\ 4 & 0 & -1 \end{pmatrix}$, $C = \begin{pmatrix} -5 & 3 & 1 \\ 2 & 0 & 5 \\ 6 & 4 & 2 \end{pmatrix}$.

3. Найти произведение матриц АВС, если

$$A = (1 \quad -3), \qquad B = \begin{pmatrix} -3 & 2 & 0 \\ -2 & 5 & -1 \end{pmatrix}, \qquad C = \begin{pmatrix} -2 & 4 & -3 & 0 \\ 0 & 2 & 5 & -2 \\ 3 & -1 & 2 & 4 \end{pmatrix}$$

- 4. Решить матричное уравнение $\begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix} * X = \begin{pmatrix} 2 & 0 \\ -1 & 3 \end{pmatrix}$.

 5. Найти обратную для матрицы $\begin{pmatrix} 1 & -1 & 1 \\ 1 & -3 & -2 \\ 2 & 3 & 2 \end{pmatrix}$.

 6. Найти обратную для матрицы $\begin{pmatrix} 1 & -1 & 1 \\ 1 & -3 & -2 \\ 2 & 3 & 2 \end{pmatrix}$.
- 7. Вычислить $\begin{pmatrix} 4 & -1 \\ 5 & -2 \end{pmatrix}^5$

- 8. Решить матричное уравнение $\begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix} * X = \begin{pmatrix} 2 & 0 \\ -1 & 3 \end{pmatrix}$.

 9. Найти матрицу A^n , если $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.
- 10. Найти произведения матриц АВ и ВА (если это возможно)

$$A = (1 -2 3 0), B = \begin{pmatrix} 5 \\ -3 \\ -4 \\ 1 \end{pmatrix}.$$

Тема 6. Арифметическое векторное пространство. Исследование систем линейных уравнений.

- уравнений. $\begin{pmatrix} 1 & \lambda & 2 \\ 2 & 1 & 4 \\ 4 & 2 & 8 \end{pmatrix}$ имеет ранг равный 1. 2. Исследовать совместность $\begin{cases} 2x_1 + 5x_2 8x_3 = 8, \\ 4x_1 + 3x_2 9x_3 = 9, \\ 2x_1 + 3x_2 5x_3 = 7, \\ x_1 + 8x_2 7x_3 = 12. \end{cases}$ 3. Найти ФСР для системы $\begin{cases} 3x_1 + 5x_2 + 2x_3 = 0, \\ 4x_1 + 7x_2 + 5x_3 = 0, \\ 2x_1 + 9x_2 + 6x_3 = 0. \end{cases}$

 - 4. Найти ранг матрицы с помощью элементарных преобразований: $\begin{pmatrix} 1 & 2 & 4 & -3 \\ 3 & 5 & 6 & -4 \\ 3 & 8 & 2 & -19 \end{pmatrix}.$ 5. Найти ранг матрицы методом окаймляющих миноров: $\begin{pmatrix} 1 & -2 & 3 & 1 \\ 3 & 2 & -4 & 2 \\ 5 & -2 & 2 & 4 \end{pmatrix}.$ 6. Найти число решений ФСР для системы $\begin{cases} 2x_1 + 2x_2 x_3 + x_4 = 0, \\ 4x_1 + 3x_2 x_3 + 2x_4 = 0, \\ 8x_1 + 5x_2 3x_3 + 4x_4 = 0, \\ 3x_1 + 3x_2 2x_3 + 2x_4 = 0. \end{cases}$
 - 7. Являются ли вектора $a_1 = (1,-2,3)$, $a_2 = (2,-1,4)$, $a_3 = (4,-5,10)$ линейно зависимыми.
- 8. Найти условия, необходимые и достаточные для того, чтобы в любом решении совместной системы линейных уравнений k-е неизвестное было равно нулю.
- 9. Исследовать системы уравнений и найти общее решение в зависимости от значений, входящих в коэффициенты параметров:

$$\begin{cases} ax + y + z = 1, \\ x + by + z = 1, \\ x + y + cz = 1. \end{cases}$$

10. Сколько баз имеет система k+1 векторов ранга k, содержащая пропорциональные векторы, отличные от нуля?

Типовые варианты контрольных работ:

Вариант №1

1. Решить системы по формулам Крамера (если это возможно):

$$\begin{cases} 2x_1 + 2x_2 - x_3 + x_4 = 4, \\ 4x_1 + 3x_2 - x_3 + 2x_4 = 6, \\ 8x_1 + 5x_2 - 3x_3 + 4x_4 = 12, \\ 3x_1 + 3x_2 - 2x_3 + 2x_4 = 6. \end{cases}$$

- 2. Даны два вектора $\vec{a} = (3, -2, 6)$ и $\vec{b} = (-2, 1, 0)$. Определить проекции на координатные оси следующих векторов: \vec{a}) $\vec{a} + \vec{b}$, $\vec{6}$) $\vec{a} - \vec{b}$.
- 3. Вычислить ранг матрицы при помощи элементарных преобразований

$$A = \begin{pmatrix} 25 & 31 & 17 & 43 \\ 75 & 94 & 53 & 132 \\ 75 & 94 & 54 & 134 \\ 25 & 32 & 20 & 48 \end{pmatrix}.$$

- 4. Вычислить величину отклонения и расстояние от точки A(-2, -4, 3)до 2x - y + 2z = 3 = 0
- 5. Найти произведения матриц АВ и ВА (если это возможно)

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 0 & -1 \end{pmatrix}, B = \begin{pmatrix} 3 & 4 & 5 \\ 6 & 0 & -2 \\ 7 & 1 & 8 \end{pmatrix}$$

Вариант №2

- 1. Разложить вектор $\vec{a} = 8\vec{i} + 10\vec{j}$ по базису $(\vec{e_1}, \vec{e_2}, \vec{e_3})$, если $\overrightarrow{e_1} = 2\overrightarrow{i} - \overrightarrow{j} - \overrightarrow{k}, \quad \overrightarrow{e_2} = 3\overrightarrow{i} + 2\overrightarrow{j} - \overrightarrow{k}, \quad \overrightarrow{e_3} = \overrightarrow{i} + 3\overrightarrow{j} + \overrightarrow{k},$
- 2. Решить системы матричным способом $\begin{cases} 2x_1 + 3x_2 5x_3 = 0, \\ -3x_1 + 2x_2 + 4x_3 = 3, \\ -x_1 + 2x_2 + 3x_3 = 2. \end{cases}$
- 3. Найти эксцентриситет и директрисы эллипса: $4x^2 + 9y^2 8x 36y + 4 = 0$
- 4. Перемножить подстановки $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix}$.

 5. Вычислить 4A 7B, где $A = \begin{pmatrix} 1 & -2 & 5 & 3 \\ 2 & 0 & -3 & 1 \\ 5 & -1 & 0 & 4 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 2 & 7 & -5 \\ -8 & 1 & 3 & 0 \\ 4 & 2 & 0 & 7 \end{pmatrix}$.

Вариант № 3

1. Определить угол между двумя прямыми (l_1) и (l_2) , если

$$(l_1)$$
: $2x + 5y - 3 = 0$ (l_2) : $5x - 2y - 6 = 0$

- $(l_1): 2x+5y-3=0 \qquad (l_2): 5x-2y-6=0$ 2. Разложить подстановку $\begin{pmatrix} 1&2&3&4&5&6&7&8&9\\ 4&1&7&5&3&8&2&6&9 \end{pmatrix}$ в виде произведения независимых циклов и вычислить декремент.
- 3. Вычислить определитель по теореме Лапласа: $\begin{bmatrix} -1 & 2 & 7 & 3 \\ 5 & 1 & -2 & 4 \\ 0 & 1 & -3 & 1 \\ 5 & 4 & 2 \end{bmatrix}$.
- 4. Найти подстановку X из равенства A X B = C, если

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 4 & 5 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 1 & 4 & 2 \end{pmatrix}, C = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 5 & 2 & 4 \end{pmatrix}$$

5. На гиперболе $16x^2 - 49y^2 = 784$ найти точки, которые были бы в три раза ближе к одной асимптоте, чем к другой.

Вариант №4

- 1. Составить уравнение плоскости, проходящей через точку A (5, 4, 3)и отсекающей равные отрезки на осях координат.
- 2. Найти произведение матриц A и B, если $A = \begin{pmatrix} -2 & 3 & 4 \\ 2 & 1 & 7 \\ 0 & 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} -5 & 4 & 5 \\ 3 & 2 & -1 \\ 0 & 1 & 9 \end{pmatrix}$.
- 3. Написать уравнение гиперболы, имеющей общие фокусы с эллипсом $24x^2 + 49y^2 = 1176$, при условии, что ее эксцентриситет e = 1,25.
- 4. Решить систему уравнений методом Гаусса: $\begin{cases} 2x_1 3x_2 + 5x_3 = 15\\ 4x_1 + 5x_2 2x_3 = -5\\ 3x_1 + 2x_2 6x_3 = -11 \end{cases}$
- 5. Дано: $|\overrightarrow{AB}| = \overrightarrow{a} + 2\overrightarrow{b}, |\overrightarrow{BC}| = -4\overrightarrow{a} \overrightarrow{b}, \overrightarrow{CD} = -5\overrightarrow{a} 3\overrightarrow{b}$. Доказать, что ABCD трапеция.

Вариант №5

- 1. Дана матрица $\begin{pmatrix} -2 & 3 & 4 \\ 2 & 1 & 7 \\ 0 & 0 & 1 \end{pmatrix}$. Найти присоединенную матрицу.
- 2. На гиперболе $144 x^2 169 y^2 = 24336$ найти точки, для которой фокальные радиус-векторы перпендикулярны друг к другу.
- 3. Найти координаты вершин параболы и величину параметра p, если $2x^2 4x + 2y 3 = 0$.
- 4. Найти ранг матрицы методом окаймляющих миноров $A = \begin{pmatrix} 2 & -1 & 3 & -2 & 4 \\ 4 & -2 & 5 & 1 & 7 \\ 2 & -1 & 1 & 8 & 2 \end{pmatrix}$.
- 5. Вычислить определитель $\begin{bmatrix} 2 & -5 & 4 & 3 \\ 3 & -4 & 7 & 5 \\ 4 & -9 & 8 & 5 \\ -3 & 2 & -5 & 3 \end{bmatrix}.$

Критерии формирования оценок по контрольным точкам (контрольные работы)

- **5-4 балла -** правильно выполнены все задания, продемонстрирован высокий уровень владения материалом, проявлены превосходные способности применять знания и умения к выполнению конкретных заданий.
- *3 балла* правильно выполнена большая часть заданий, присутствуют незначительные ошибки, продемонстрирован хороший уровень владения материалом, проявлены средние способности применять знания и умения к выполнению конкретных заданий.
- 2 балла задания выполнены более чем наполовину, присутствуют серьезные ошибки, продемонстрирован удовлетворительный уровень владения материалом, проявлены низкие способности применять знания и умения к выполнению конкретных заданий.
- 1 балл дан неполный ответ, представляющий собой разрозненные знания по теме вопроса существенными ошибками в определениях.
 - *0 баллов* при полном несоответствии всем критериям и отсутствии ответа.

3.4. Вопросы к зачету для оценки компетенций (ОПК-1) по дисциплине «Аналитическая геометрия и линейная алгебра».

- 1. Взаимное расположение двух прямых в пространстве. Условие перпендикулярности и параллельности двух прямых.
- 2. Миноры и алгебраические дополнения. Теорема Лапласа.
- 3. Уравнение плоскости, проходящей через точку, параллельно двум заданным векторам.
- 4. Решение систем линейных уравнений. Метод Гаусса.
- 5. Смешанное произведение трех векторов. Свойства. Смешанное произведение в координатной форме. Геометрический смысл.
- 6. Гипербола. Каноническое уравнение гиперболы.
- 7. Уравнение плоскости, проходящей через три заданные точки.
- 8. Эллипс. Каноническое уравнение эллипса. Эксцентриситет эллипса
- 9. Скалярное произведение векторов. Свойства.
- 10. Парабола. Каноническое уравнение параболы.
- 11. Скалярное произведение в координатной форме. Условие коллинеарности векторов.
- 12. Векторное произведение векторов. Свойства. Векторное произведение в координатной форме. Геометрический смысл.
- 13. Определители n го порядка.
- 14. Решение систем линейных уравнений матричным способом.
- 15. Перестановки. Инверсия. Транспозиция.
- 16. Матрицы. Основные понятия, действия над матрицами.
- 17. Обратная матрица. Условие существования и способ вычисления.
- 18. Взаимное расположение двух плоскостей.
- 19. Системы линейных уравнений крамеровского типа. Правило Крамера.
- 20. Умножение матриц. Свойства.
- 21. Линейные операции над векторами. Свойства линейных операций.
- 22. Компланарные векторы. Условие компланарности. Объем пирамиды.
- 23. Общее уравнение прямой на плоскости. Неполные уравнения. Уравнение прямой с угловым коэффициентом.
- 24. Параметрические уравнения прямой в пространстве.
- 25. Общее уравнение плоскости. Неполные уравнения.
- 26. Уравнение плоскости в отрезках. Нормальное уравнение плоскости.
- 27. Расстояние от точки до прямой на плоскости. Отклонение точки от прямой.
- 28. Подстановки. Четность подстановки. Умножение подстановок.
- 29. Расстояние от точки до плоскости. Отклонение точки от плоскости.
- 30. Вычисление определителя n го порядка методом разложения по элементам строки или столбца.
- 31. Нормальное уравнение прямой на плоскости.
- 32. Уравнение прямой, проходящей через две точки на плоскости.
- 33. Взаимное расположение двух прямых на плоскости.
- 34. Матричный способ решения систем линейных уравнений.
- 35. Понятие *n*-мерного вектора. Операции над *n*-мерными векторами.
- 36. Определение арифметического *п*-мерного векторного пространства.

- 37. Линейная зависимость векторов. Свойства.
- 38. Базис и ранг системы векторов.
- 39. Ранг матрицы. Теорема о базисном миноре. Вычисление ранга матрицы.
- 40. Исследование систем линейных уравнений. Теорема Кронекера-Капелли.

Целью промежуточных аттестаций по дисциплине является оценка качества освоения дисциплины обучающимися.

Промежуточная аттестация предназначена для объективного подтверждения и оценивания достигнутых результатов обучения после завершения изучения дисциплины. Осуществляется в конце семестра и представляет собой итоговую оценку знаний по дисциплине «Аналитическая геометрия и линейная алгебра» в виде проведения зачета.

Промежуточная аттестация может проводиться в устной или письменной форме. На промежуточную аттестацию отводится до 30 баллов.

Форма билета для зачета по учебной дисциплине

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Кабардино-Балкарский государственный университет им. Х.М. Бербекова» (КБГУ)

Институт физики и математики Кафедра алгебры и дифференциальных уравнений Дисциплина — Аналитическая геометрия и линейная алгебра

БИЛЕТ № 1

- 1. Парабола. Каноническое уравнение параболы.
- 2. Расстояние от точки до плоскости. Отклонение точки от плоскости.
- 3. Найти матрицу A^n , если $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

Руководитель ОПОП	
к.т.н., доцент	О.А. Молоканов
Зав. кафедрой алгебры и диф. уравнений,	
к.фмн., доцент	М.С. Нирова