МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Кабардино-Балкарский государственный университет им. Х.М. Бербекова» (КБГУ)

ИНСТИТУТ ИНФОРМАТИКИ, ЭЛЕКТРОНИКИ И РОБОТОТЕХНИКИ КАФЕДРА ЭЛЕКТРОНИКИ И ЦИФРОВЫХ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

УТВЕРЖДАЮ
Руководитель ОПОП
О.А.Молоканов
16 зематря 2024

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ (ОЦЕНОЧНЫХ МАТЕРИАЛОВ) ПО ДИСЦИПЛИНЕ (ПО МОДУЛЮ)

«ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ БИОТЕХНИЧЕСКИХ И МЕДИЦИНСКИХ АППАРАТОВ»

Программа специалитета

12.05.01 Электронные и оптико-электронные приборы и системы специального назначения

Специализация Оптико-электронные информационно-измерительные приборы и системы

> Квалификация (степень выпускника) **Инженер**

> > Форма обучения **Очная**

НАЛЬЧИК 2024 г.

СОДЕРЖАНИЕ

- 1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы, описание показателей, критериев оценивания компетенций на различных этапах их формирования.
- 2. Методические материалы и типовые контрольные задания, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы.
- 3. Перечень контрольных заданий и иных материалов, необходимых для оценки знаний, умений, навыков и опыта деятельности.

1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы, описание показателей, критериев оценивания компетенций на различных этапах их формирования.

Карта компетенции

Код и наименование компетенции выпускника

- **ПК-5** Способность проектировать специальную оснастку, предусмотренную технологией изготовления оптотехники, оптических, оптико-электронных приборов, комплексов и их составных частей.
- **ПК-6** Способность проводить контроль качества выпускаемой оптической продукции.
- **ПК-7** Способность осуществлять эксплуатацию электронных и оптоэлектронных приборов и систем специального назначения.

Код и наименование индикатора достижения компетенций выпускника

- **ПК-5.1.** Способен разрабатывать специальную оснастку для изготовления оптотехники, оптических и оптико-электронных приборов, комплексов и их составных частей.
- **ПК-5.2**. Способен разрабатывать методики сборки и юстировки оптотехники, оптических и оптико-электронных приборов и комплексов с помощью специальной оснастки.
- **ПК-5.3.** Способен применять компьютерные технологии и программные средства проектирования и конструирования оптических и оптико-электронных приборов и комплексов.
- **ПК-6.1.** Способен проводить анализ технического состояния и возможности контрольно-измерительного оборудования организации.
- **ПК-6.2**. Способен применять методы контроля качества выпускаемой оптической продукции и требования к измерительной аппаратуре.
 - ПК-7.1. Способен производить монтаж биотехнических и медицинских аппаратов.
- **ПК-7.2**. Способен производить регулировку и настройку биотехнических и медицинских аппаратов.
- **ПК-7.3**. Способен производить техническое обслуживание биотехнических и медицинских аппаратов.

Тип компетенции: профессиональная компетенция выпускника образовательной программы по специальности 12.05.01 «Электронные и оптико-электронные приборы и

системы специального назначения», специализация: «Оптико-электронные информационно-измерительные приборы и системы», уровень ВО – специалитет.

Результаты обучения	Основные показатели	Виды оценочных
(компетенции)	оценки результатов	материалов,
,	обучения	обеспечивающих
	·	формирование компетенций
Код и наименование	Знать виды	Выполнение и защита
компетенции выпускника	технологических	лабораторных работ.
ПК-5. Способен	процессов изготовления	
проектировать	приборов, комплексов и	Оценочные материалы для
специальную	их составных частей;	1
оснастку,	виды технологических	практических занятий.
предусмотренную	процессов сборки	
технологией изготовления	приборов и комплексов	Оценочные материалы для
оптотехники, оптических,	Уметь планировать	коллоквиума.
оптико-электронных	потребности в	
приборов, комплексов и их	оборудовании,	Оценочные материалы для
составных частей.	материально технических	проведения тестирования.
	ресурсах и персонале для	
Код и наименование	реализации технологического	Оценочные материалы для
индикатора достижения	процесса; организовывать	промежуточной аттестации.
компетенций	подготовку и настройку	промежуто той иттестиции.
·	оборудования для	
выпускника ПК-5.1. Способен	изготовления приборов,	
	комплексов и составных	
разрабатывать специальную оснастку для	частей.	
изготовления	Владеть навыками	
оптотехники, оптических и	организации	
оптико-электронных	материально	
приборов, комплексов и их	технического	
составных частей.	обеспечения	
ПК-5.2. Способен		
разрабатывать методики	разработанного	
сборки и юстировки	технологического	
оптотехники, оптических и	процесса и наладки	
оптико-электронных	необходимого	
приборов и комплексов с	технологического	
помощью специальной	оборудования.	
оснастки.		
ПК-5.3. Способен		
применять компьютерные		
технологии и программные		
средства проектирования и		
конструирования		
оптических и оптико-		
электронных приборов и комплексов.		
приобров и комплексов.		

Код и наименование компетенции выпускника

ПК-6. Способен проводить контроль качества выпускаемой оптической продукции.

Код и наименование индикатора достижения компетенций выпускника

ПК-6.1. Способен проводить анализ технического состояния и возможности контрольно-измерительного оборудования организации.

ПК-6.2. Способен применять методы контроля качества выпускаемой оптической продукции и требования к измерительной аппаратуре.

Знать технологию выполнения анализа технического состояния и возможности контрольно-измерительного оборудования организации.
Уметь составлять схемы

организации. Уметь составлять схемы контроля параметров и характеристик выпускаемой оптической продукции с использованием специального оборудования; выбирать оптимальный технологический процесс контроля параметров и характеристик выпускаемой оптической продукции.

Владеть методами контроля качества выпускаемой оптической продукции и требования к измерительной аппаратуре.

Выполнение и защита лабораторных работ.

Оценочные материалы для практических занятий.

Оценочные материалы для коллоквиума.

Оценочные материалы для проведения тестирования.

Оценочные материалы для промежуточной аттестации.

Код и наименование компетенции выпускника

ПК-7. Способен осуществлять эксплуатацию электронных и оптоэлектронных приборов и систем специального назначения.

Код и наименование индикатора достижения компетенций выпускника

ПК-7.1. Способен производить монтаж биотехнических и медицинских аппаратов. **ПК-7.2**. Способен производить регулировку и

настройку биотехнических и медицинских аппаратов.

Знать методы проектирования электронных и оптоэлектронных приборов и систем специального назначения Уметь осуществлять эксплуатацию электронных и оптоэлектронных приборов и систем специального назначения. Владеть навыками организации обслуживания электронных и оптоэлектронных приборов и систем специального назначения. Выполнение и защита лабораторных работ.

Оценочные материалы для практических занятий.

Оценочные материалы для коллоквиума.

Оценочные материалы для проведения тестирования.

Оценочные материалы для промежуточной аттестации.

ПК-7.3. Способен	
производить техническое	
обслуживание	
биотехнических и	
медицинских аппаратов.	
ПК-7.4. Способен	
производить ремонт	
биотехнических и	
медицинских аппаратов.	

1.2. Критерии формирования оценок на различных этапах их формирования

Текущий и рубежный контроль

Оценка регулярности, своевременности и качества выполнения обучающимся учебной работы по изучению дисциплины в течение периода изучения дисциплины (сумма — не более 70 баллов). Баллы, характеризующие успеваемость обучающегося по дисциплине, набираются им в течение всего периода обучения за изучение отдельных тем и выполнение отдельных видов работ. Общий балл складывается в результате проведения текущего и рубежного контроля по дисциплине:

Этап (уровень)	Первый этап (уровень)	Второй этап (уровень)	Третий этап (уровень)
Баллы	36-50 баллов	51-60 баллов	61-70 баллов
Характеристика	Полное или частичное посещение аудиторных занятий. Частичное выполнение лабораторных работ. Выполнение контрольных работ, тестовых заданий на оценку «удовлетворительно».	Полное или частичное посещение аудиторных занятий. Полное выполнение лабораторных работ. Выполнение контрольных работ, тестовых заданий на оценки «хорошо».	Полное посещение аудиторных занятий. Полное выполнение лабораторных работ. Выполнение контрольных работ, тестовых заданий на оценки «хорошо».

На первом (начальном) этапе формирования компетенции формируются знания, умения и навыки, составляющие базовую основу компетенции, без которой невозможно ее дальнейшее развитие. Обучающийся воспроизводит термины, факты, методы, понятия, принципы и правила; решает учебные задачи по образцу.

На втором (основном) этапе формирования компетенции приобретается опыт деятельности, когда отдельные компоненты компетенции начинают «работать» в комплексе и происходит выработка индивидуального алгоритма продуктивных действий, направленных на достижение поставленной цели.

На этом этапе обучающийся осваивает аналитические действия с предметными знаниями по конкретной дисциплине, способен самостоятельно решать учебные задачи, внося коррективы в алгоритм действий, осуществляя координирование хода работы, переносит знания и умения на новые условия.

Третий (завершающий) этап — это овладение компетенцией. Обучающийся способен использовать знания, умения, навыки при решении задач повышенной сложности и в нестандартных условиях. По результатам этого этапа обучающийся демонстрирует итоговый уровень сформированности компетенции.

Промежуточная аттестация (зачет)

Оценка	Не зачтено	Зачтено
Баллы	36-60 баллов	61-70 баллов
		Обучающийся имеет 36-50 по итогам текущего и руб

Характеристик а

Обучающийся имеет 36-60 баллов по итогам текущего и рубежного контроля. На зачете не выполнил предложенное преподавателем задание. По итогам промежуточного контроля получил 0 баллов.

Обучающийся имеет 36-50 баллов по итогам текущего и рубежного контроля, на зачете полностью выполнил 1/3 и более предложенного преподавателем задания. По итогам промежуточного контроля получил от 11 до 25 баллов.

Обучающийся имеет 51-60 баллов по итогам текущего и рубежного контроля, на зачете выполнил одно задание полностью или частично выполнил 2 из трех заданий. По итогам промежуточного контроля получил от 1 до 10 баллов. Обучающемуся, имеющему 61-70 баллов по итогам текущего и рубежного контроля, выставляется отметка «зачтено» без сдачи зачета.

Промежуточная аттестация (экзамен)

Оценка Удовлетворительно Хорошо Отлично

81-90 баллов	91-100 баллов
	Уп-100 оаллов Хорошо ориентируется в современных научных направлениях, соответствующих профильной предметной области. Доказательно и аргументировано представляет собственные и известные научные результаты в данной предметной области. Убедительно и аргументировано излагает свои собственные результаты как в устной, так и в письменной
iia iip iip iia	Тожет указать екоторые научные аправления, редставляющие еоретический и рактический интерес. орошо представляет ввестные научные езультаты по профилю одготовки. Может стно и письменно вложить свои

2. Методические материалы и типовые контрольные задания, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Перечень оценочных средств

Nº	Наименование оценочного средства	Краткая характеристика оценочного средства	Представление оценочного средства в фонде
1.	Коллоквиум	Средство контроля усвоения учебного материала темы,	Вопросы по темам / разделам дисциплины
		раздела или разделов	

		дисциплины.	
2.	Контрольная	Средство проверки умений	Вопросы по темам /
	работа	применять полученные	разделам дисциплины
		знания для представления	
		материала по некоторой теме	
		/ решения задач	
		определенного типа по	
		некоторому разделу	
3.	Лабораторная	Средство оценки умения	Перечень лабораторных
	работа	применять полученные	работ
		теоретические знания в	
		практической ситуации.	
		Задание по работе должно	
		быть направлено на	
		оценивание тех	
		компетенций, которые	
		подлежат освоению в данной	
		дисциплине, и должно	
		содержать четкую	
		инструкцию по выполнению	
		или алгоритм действий.	
4.	Тест	Система	Фонд тестовых заданий
		стандартизированных	
		заданий, позволяющая	
		автоматизировать процедуру	
		измерения уровня знаний и	
		умений обучающегося.	

3. перечень контрольных заданий и иных материалов, необходимых для оценки знаний, умений, навыков и опыта деятельности

3.1. вопросы для коллоквиума и контрольных работ

(контролируемые компетенции ПК-5, ПК-6, ПК-7)

9 семестр

Первый коллоквиум:

- 1. Первичные и вторичные источники питания.
- 2. Характеристики гальванических элементов.
- 3. Основные параметры гальванических элементов.
- 4. Аккумуляторы и их характеристики.
- 5. Фотоэлектрические источники питания.
- 6. Характеристики трансформаторов.

- 7. Конструкция трансформаторов.
- 8. Расчет параметров трансформаторов.
- 9. Конструктивный и тепловой расчет трансформаторов.
- 10. Расчет для преобразователей напряжения.

Второй коллоквиум:

- 1. Общая характеристика полупроводниковых приборов.
- 2. Диоды полупроводниковые: классификация и свойства.
- 3. Туннельные диоды: свойства и применение.
- 4. Транзисторы: основные параметры и назначение.
- 5. Тиристоры: основные параметры и назначение.
- 6. Интегральные микросхемы.
- 7. Микроконтроллеры и программаторы.
- 8. Перспективы развития микроэлектроники.

Третий коллоквиум:

- 1. Новые функциональные материалы для электроники.
- 2. Выпрямители: параметры и назначение.
- 3. Однофазные выпрямители: структурная схема и применение.
- 4. Временные диаграммы напряжения и токов нагрузки.
- 5. Временные диаграммы для выпрямительного диода.
- 6. Фильтры: параметры и назначение.
- 7. Классификация фильтров.
- 8. Принцип работы фильтров и области их применения.
- 9. Данные и основы расчета фильтров.

10 (А) семестр

Первый коллоквиум:

- 1. Стабилизаторы: основные характеристики и назначение.
- 2. Понятие и характеристики параметрических стабилизаторов.
- 3. Структурные схемы параметрических стабилизаторов.
- 4. Принципиальные электрические схемы параметрических стабилизаторов.
- 5. Области применения стабилизаторов.
- 6. Стабилитроны: характеристики и назначение.
- 7. Импульсные стабилизаторы: основные параметры и назначение.

- 8. Электрическая структурная и принципиальная схемы импульсных стабилизаторов.
- 9. Области применения импульсных стабилизаторов.

Второй коллоквиум:

- 1. Общая характеристика импульсных источников питания.
- 2. Схемы включения и назначение импульсных источников питания.
- 3. Схемы функциональных устройств преобразователей.
- 4. Схемы защиты от перегрузок.
- 5. Порядок проверки функционирования.
- 6. Неисправности и методы их обнаружения.
- 7. Меры по устранению неисправностей.
- 8. Генераторы стабильного тока.

Третий коллоквиум:

- 1. Применение генераторов стабильного тока.
- 2. Генераторы стабильного напряжения.
- 3. Принципиальная схема простого интегрального операционного усилителя.
- 4. Интегрирующий усилитель: параметры и назначение.
- 5. Дифференцирующий усилитель: параметры и назначение.
- 6. Логарифмический усилитель: параметры и назначение.
- 7. Активные выпрямители.
- 8. Принципы АЦП и ЦАП.
- 9. Схемы устройств АЦП и ЦАП различных типов.
- 10. Сравнительная характеристика АЦП и ЦАП.

Рекомендации при подготовке к коллоквиуму

- проработать конспекты лекций по вопросам коллоквиума;
- прочитать основную и дополнительную литературу, рекомендованную по изучаемым вопросам;
- ответить на вопросы коллоквиума;
- при затруднениях, проконсультироваться с преподавателем.

3.2. Критерии оценивания

Оценка			
Неудовлетвори- удовлетворительно хорошо от			отлично
тельно	4 балла	6 баллов	8 баллов
2 балла			
Студент не знает	Студент поверхностно	Студент хорошо знает	Студент в полном
значительной части	знает вопросы	материал, грамотно и	объеме знает
вопросов, допускает	коллоквиума,	по существу излагает	материал, грамотно и
существенные ошибки в	допускает неточности	его, допуская	по существу излагает
ответах на вопросы	в ответе на вопрос	некоторые неточности	его, не допуская
		в ответе на вопрос.	существенных
			неточностей в ответе
			на вопрос.

Методические рекомендации по выполнению контрольной работы

При выполнений заданий необходимо внимательно ознакомиться с контентом по вопросом соответствующей темы. Основная цель работы - овладеть навыками исследования изучаемого вопроса.

3.3.Типовые тестовые задания по дисциплине

(контролируемые компетенции ПК-5, ПК-6, ПК-7)

1 контрольная точка

I:

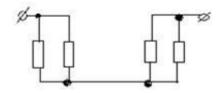
- S: Сопротивление полупроводника при повышении температуры
- -: увеличивается
- +: уменьшается
- -: не изменяется

ŀ

- S: При увеличении расстояния между обкладками конденсатора его электрическая емкость
- +: уменьшается
- -: увеличивается
- -: не изменяется

+: постоянный ток -: переменный ток -: оба варианта верны -: оба варианта неверны I: S: Емкостное сопротивление конденсатора находится по формуле: -: $Xc = 2\pi f$ $-: Xc = \omega C$ +: $Xc = 1/(2\pi fC)$ -: $Xc = 1/(2\pi\omega C)$ I: S: При последовательном соединении конденсаторов их суммарная емкость -: увеличивается +: уменьшается -: не изменяется I: S: Токи в биполярном p-n-p транзисторе связаны выражением -: Іб = Іэ + Ік $-: I\kappa = I\delta + I$ $+: I_{\Im} = I_{\Im} + I_{K}$ -: Ік = Іб - Іэ I: S: У каких веществ на энергетической диаграмме валентная зона примыкает к зоне проводимости? +: проводники -: диэлектрики -: полупроводники I: S: Устройство, состоящее из двух проводников любой формы, разделенных диэлектриком -: резистор -: источник +: конденсатор -: разрядник

S: Конденсатор не проводит


S: Определите сопротивление нити электрической лампы мощностью 100 Вт, если лампа
рассчитана на напряжение 220 В.
-: 570 Ом
+: 484 Ом
-: 523 Ом
-: 454 Ом
I:
S: Преобразуют энергию топлива в электрическую энергию
-: атомные электростанции
-: тепловые электростанции
-: механические электростанции
+: все вышеуказанные
I:
S: Устройство, состоящее из катушки и железного сердечника внутри ее:
-: реостат
+: электромагнит
-: аккумулятор
-: колебательный контур
I:
S: При параллельном соединении суммарная емкость
-: не изменится
+: увеличится
-: уменьшится
I:
S: Вращающаяся часть электрогенератора
+: ротор
-: статор
-: трансформатор
-: перфоратор
I:
S: Совокупность витков, образующих электрическую цепь, в которой суммируются ЭДС,
наведенные в витках:
-: магнитная система
-: плоская магнитная система
+: обмотка

- -: электрическая система
- Ţ٠
- S: Что такое потенциал точки?
- +: работа по перемещению единичного заряда из точки поля в бесконечность
- -: величина, равная отношению заряда одной из обкладок конденсатора к напряжению между ними
- -: это разность потенциалов двух точек электрического поля.

2 контрольная точка

I:

S: Сколько в схеме узлов и ветвей?

- -: узлов 4, ветвей 4
- +: узлов 2, ветвей 4
- **-**: узлов 3, ветвей 5

I:

- S: Величина, обратная сопротивлению
- +: проводимость
- -: удельное сопротивление
- -: период

I:

- S: Будет ли проходить в цепи постоянный ток, если вместо источника ЭДС включить заряженный конденсатор?
- -: не будет
- -: будет
- +: будет, но недолго

- S: Трансформатор, предназначенный для преобразования импульсных сигналов с длительностью импульса до десятков микросекунд с минимальным искажением формы импульса
- -: трансформатор тока

-: автотрансформатор +: импульсный трансформатор I: S: Диэлектрики применяют для изготовления -: магнитопроводов -: обмоток катушек индуктивности +: корпусов штепсельных вилок I: S: К полупроводниковым материалам относятся - алюминий +: кремний -: железо I: S: Выберите правильное утверждение: +: ток в замкнутой цепи прямо пропорционален электродвижущей силе и обратно пропорционален сопротивлению всей цепи -: ток в замкнутой цепи прямо пропорционален сопротивлению всей цепи и обратно пропорционален электродвижущей силе -: сопротивление в замкнутой цепи прямо пропорционально току всей цепи и обратно пропорционально электродвижущей силе I: S: Элемент электрической цепи, предназначенный для использования его электрического сопротивления, называется -: клеммы -: ключ +: резистор Į. S: Два источника имеют одинаковые ЭДС и токи, но разные внутренние сопротивления. Какой из источников имеет больший КПД? -: КПД источников равны +: источник с меньшим внутренним сопротивлением -: источник с большим внутренним сопротивлением I:

S: Какое из приведенных свойств не соответствует параллельному соединению ветвей?

-: напряжение на всех ветвях схемы одинаковы

- -: отношение токов обратно пропорционально отношению сопротивлений на ветвях схемы
- +: общее сопротивление равно сумме сопротивлений всех ветвей схемы.

I:

- S: Какой способ соединения источников позволяет увеличить напряжение?
- +: последовательное соединение
- -: параллельное соединение
- -: смешанное соединение

I:

- S: Заданы ток и напряжение: $i = Imax*sin (\omega t)$ и $u = Umax*sin (\omega t + 30 \Box)$. Определите угол сдвига фаз.
- -: 0□
- +: 30 🗆
- -: 60□

I:

- S: Амплитуда синусоидального напряжения 100 В, начальная фаза φ = − 60 □, частота 50 Гу. Зануских упоружения
- Гц. Записать уравнение мгновенного значения этого напряжения.
- -: $u = 100*\cos(-60\Box t)$
- $+: u = 100*\sin(50t 60\square)$
- $-: u = 100*\sin(314t 60\square)$

I:

- S: При каком напряжении выгоднее передавать электрическую энергию в линии электропередач при заданной мощности?
- -: при пониженном
- +: при повышенном
- -: безразлично

3 контрольная точка

I:

S: Напряжение на зажимах цепи с резистивным элементом изменяется по закону: $u = 100*\sin(314t + 60\Box)$. Определите закон изменения тока в цепи, если R = 20 Ом.

$$-: I = 5*\sin(314t)$$

$$+: I = 5*\sin(314t + 30\square)$$

$$-: I = 3.55*\sin(314t + 30\square)$$

S: В электрической цепи переменного тока, содержащей только активное сопротивление
R, электрический ток
+: совпадает по фазе с напряжением
-: отстает по фазе от напряжения на 90□
-: опережает по фазе напряжение на 90 □
I:
S: Обычно векторные диаграммы строят для
-: амплитудных значений ЭДС, напряжений и токов
+: действующих значений ЭДС, напряжений и токов
-: действующих и амплитудных значений
I:
S: В цепи синусоидального тока с резистивным элементом энергия источника
преобразуется в энергию
+: тепловую
-: магнитного поля
-: электрического поля
I:
S: Укажите параметр переменного тока, от которого зависит индуктивное сопротивление
катушки.
-: действующее значение тока
-: начальная фаза тока
+: период переменного тока
I:
S: Как изменится период синусоидального сигнала при уменьшении частоты в 3 раза?
-: период не изменится
+: период увеличится в 3 раза
-: период уменьшится в 3 раза
I:
S: Какой прибор нельзя подключить к измерительной обмотке трансформатора тока?
-: амперметр
+: вольтметр
-: омметр
I:
S. У силового однофазного трансформатора номинальное напряжение на входе 6000 В н

выходе 100 В. Определить коэффициент трансформации.

+:60

-. 6

-: 600

I:

- S: Выпрямитель это:
- +: устройство, преобразующее переменный ток в постоянный
- -: устройство, преобразующее постоянный ток в переменный
- -: устройство, преобразующее постоянную энергию в переменную

I:

- S: Основными элементами структурной схемы компенсационного стабилизатора постоянного напряжения являются (выберите один или несколько правильных ответов):
- +: источник напряжения
- -: резистор
- +: усилительный элемент
- +: регулирующий элемент
- +: сравнивающий элемент
- -: ничего из вышеперечисленного

I:

- S: Преобразователи постоянного напряжения используются как экономичные и компактные источники
- -: постоянного тока
- +: высокого напряжения
- -: высокой мощности

I:

- S: Коэффициент стабилизации
- -: отношение относительного изменения силы тока на входе к относительному изменению силы тока на выходе стабилизатора
- +: отношение относительного изменения напряжения на входе к относительному изменению напряжения на выходе стабилизатора
- -: ничего из вышеперечисленного

I:

S: Условно-графическое обозначение какого элемента представлено на рисунке

-: выпрямительного диода

- +: стабилитрона
- -: тиристора
- -: биполярного транзистора

I:

- S: Электронные устройства, которые используют для приема и передачи информации с помощью радиочастотных сигналов под цифровым или аналоговым управлением, называются
- +: радиоэлектронные
- -: электронные
- -: интегрирующие

I:

- S: Генераторы синусоидальных электромагнитных колебаний составляют основу
- -: аппаратов для гальванизации
- +: аппаратов для УВЧ-терапии
- -: аппаратов для электрофореза

Методические рекомендации

Полный банк тестовых заданий по дисциплине представлен в системе онлайнобучения на базе программного обеспечения Moodle со встроенной подсистемой тестирования КБГУ (https://open.kbsu.ru). Обучающийся, чтобы пройти тестирование, входит в систему open.kbsu.ru под своим личным логином и паролем, выбирает нужную дисциплину и проходит тестирование.

Критерии формирования оценок по тестовым заданиям:

- 5 баллов получают обучающиеся с правильным количеством ответов на тестовые вопросы. Выполнено 100 % предложенных тестовых вопросов;
- 4 балла получают обучающиеся с правильным количеством ответов на тестовые вопросы 80 —99 % от общего объема заданных тестовых вопросов;
- 3 балла получают обучающиеся с правильным количеством ответов на тестовые вопросы 50 –79% от общего объема заданных тестовых вопросов;
- 2 балла получают обучающиеся с правильным количеством ответов на тестовые вопросы менее 26-49 % от общего объема заданных тестовых вопросов.
- 1 балл получают обучающиеся с правильным количеством ответов на тестовые вопросы менее 11-25 % от общего объема заданных тестовых вопросов.

0 баллов – получают обучающиеся с правильным количеством ответов на тестовые вопросы – менее 11 % от общего объема заданных тестовых вопросов.

3.4. Перечень практических работ

(контролируемые компетенции ПК-5, ПК-6, ПК-7)

№ п/п	Наименование практических работ
1.	Изучение технической документации. Составление регламента и графика
	технического обслуживания аппарата БМАС.
2.	Изучение технической документации. Составление регламента и графика
	технического обслуживания аппаратов.
3.	Изучение принципов работы электрических схем приборов.
4.	Работа с ПО, предназначенными для изучения структуры баз данных, методы
	восстановления баз данных.
5.	Изучение измерительных генераторов и поверка их основных параметров.
6.	Исследование АЧХ RC-цепи.
7.	Исследование АЧХ RL-цепи.
8.	Исследование AЧX RLC-цепи.
9.	Измерение параметров импульсных сигналов.
10.	Исследование нелинейных цепей.

Критерии формирования оценок по практическим работам:

7 баллов - ставится за практические работы, выполненные полностью без ошибок и недочетов; обучающийся демонстрирует знание теоретического и практического материала по теме практической работы;

6 баллов — ставится за практические работы, выполненные полностью, но при наличии в ней не более одной негрубой ошибки и одного недочета, не более трех недочетов. Обучающийся демонстрирует знание теоретического и практического материала по теме практической работы, допуская незначительные неточности;

5 баллов — ставится за практические работы, если студент правильно выполнил не менее 2/3 всех работ или допустил не более одной грубой ошибки и двух недочетов, не более одной грубой и одной негрубой ошибки, не более трех негрубых ошибок, одной негрубой.

Менее *4 баллов* – ставится за практические работы, если число ошибок и недочетов превысило норму для оценки 3 или правильно выполнено менее 2/3 всех работ.

3.5. Оценочные материалы для промежуточной аттестации

Вопросы к зачету (9 семестр)

(контролируемые компетенции ПК-5, ПК-6, ПК-7)

- 1. Первичные и вторичные источники питания.
- 2. Характеристики гальванических элементов.
- 3. Основные параметры гальванических элементов.
- 4. Аккумуляторы и их характеристики.
- 5. Фотоэлектрические источники питания.
- 6. Характеристики трансформаторов.
- 7. Конструкция трансформаторов.
- 8. Расчет параметров трансформаторов.
- 9. Конструктивный и тепловой расчет трансформаторов.
- 10. Расчет для преобразователей напряжения.
- 11. Общая характеристика полупроводниковых приборов.
- 12. Диоды полупроводниковые: классификация и свойства.
- 13. Туннельные диоды: свойства и применение.
- 14. Транзисторы: основные параметры и назначение.
- 15. Тиристоры: основные параметры и назначение.
- 16. Интегральные микросхемы.
- 17. Микроконтроллеры и программаторы.
- 18. Перспективы развития микроэлектроники
- 19. Новые функциональные материалы для электроники.
- 20. Выпрямители: параметры и назначение.
- 21. Однофазные выпрямители: структурная схема и применение.
- 22. Временные диаграммы напряжения и токов нагрузки.
- 23. Временные диаграммы для выпрямительного диода.
- 24. Фильтры: параметры и назначение.
- 25. Классификация фильтров.
- 26. Принцип работы фильтров и области их применения.
- 27. Данные и основы расчета фильтров.

Вопросы к экзамену (10 семестр)

(контролируемые компетенции ПК-5, ПК-6, ПК-7)

1. Стабилизаторы: основные характеристики и назначение.

- 2. Понятие и характеристики параметрических стабилизаторов.
- 3. Структурные схемы параметрических стабилизаторов.
- 4. Принципиальные электрические схемы параметрических стабилизаторов.
- 5. Области применения стабилизаторов.
- 6. Стабилитроны: характеристики и назначение.
- 7. Импульсные стабилизаторы: основные параметры и назначение.
- 8. Электрическая структурная и принципиальная схемы импульсных стабилизаторов.
- 9. Области применения импульсных стабилизаторов.
- 10. Общая характеристика импульсных источников питания.
- 11. Схемы включения и назначение импульсных источников питания.
- 12. Схемы функциональных устройств преобразователей.
- 13. Схемы защиты от перегрузок.
- 14. Порядок проверки функционирования.
- 15. Неисправности и методы их обнаружения.
- 16. Меры по устранению неисправностей.
- 17. Генераторы стабильного тока.
- 18. Применение генераторов стабильного тока.
- 19. Генераторы стабильного напряжения.
- 20. Принципиальная схема простого интегрального операционного усилителя.
- 21. Интегрирующий усилитель: параметры и назначение.
- 22. Дифференцирующий усилитель: параметры и назначение.
- 23. Логарифмический усилитель: параметры и назначение.
- 24. Активные выпрямители.
- 25. Принципы АЦП и ЦАП.
- 26. Схемы устройств АЦП и ЦАП различных типов.
- 28. Сравнительная характеристика АЦП и ЦАП

Целью промежуточных аттестаций по дисциплине является оценка качества освоения дисциплины обучающимися.

Промежуточная аттестация предназначена для объективного подтверждения и оценивания достигнутых результатов обучения после завершения изучения дисциплины. Осуществляется в конце семестра и представляет собой итоговую оценку знаний по дисциплине «Техническое обслуживание биотехнических и медицинских аппаратов» в виде проведения зачета и экзамена.

Промежуточная аттестация может проводиться в устной или письменной форме. На промежуточную аттестацию отводится до 30 баллов.

Форма билета для зачета по учебной дисциплине

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Кабардино-Балкарский государственный университет им. Х.М. Бербекова» (КБГУ)

Институт информатики, электроники и робототехники **Кафедра** электроники и цифровых информационных технологий **Дисциплина** — Техническое обслуживание биотехнических и медицинских аппаратов

БИЛЕТ № 1	
1. Первичные и вторичные источники питания.	
2. Диоды полупроводниковые: классификация	и свойства.
Руководитель ОПОП к.т.н., доцент	О.А. Молоканов
Зав. кафедрой электроники	
и цифровых информационных технологий, д.т.н., профессор	Р.Ш. Тешев
	Форма экзаменационного билета по учебной дисциплине
МИНИСТЕРСТВО НАУКИ И ВЫСШЕ РОССИЙСКОЙ ФЕДЕРА	
Федеральное государственное бюджетное высшего образования «Кабардино-Балкарскими. Х.М. Бербекова» Институт информатики, электроники и робототехники Кафедра электроники и цифровых информационных те Дисциплина — Техническое обслуживание биотехническое	образовательное учреждение ий государственный университет (КБГУ)
ЭКЗАМЕНАЦИОННЫЙ	БИЛЕТ № 1
1. Структурные схемы параметрических стаби 2. Принципы АЦП и ЦАП.	лизаторов.
Руководитель ОПОП к.т.н., доцент	О.А. Молоканов
Зав. кафедрой электроники и цифровых информационных технологий, д.т.н., профессор	Р.Ш. Тешев