МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Кабардино-Балкарский государственный университет им. Х.М. Бербекова» (КБГУ)

Институт информатики, электроники и робототехники Кафедра электроники и цифровых информационных технологий

СОГЛАСОВАНО

Руководитель образовательной программы

О.А. Молоканов

«16 » декабря 2024 г.

УТВЕРЖДАЮ

Директор ИИЭ и Р

вести в В.В. Шогенов

6 mon Gekachel 2024 r.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ) Б1.В.ДВ.02.02 «ОСНОВЫ ТЕХНОЛОГИИ ЭЛЕКТРОННОЙ КОМПОНЕНТНОЙ БАЗЫ»

Специальность

12.05.01 Электронные и оптико-электронные приборы и системы специального назначения

Специализация

Оптико-электронные информационно-измерительные приборы н системы

> Квалификация (степень) выпускника Инженер

> > Форма обучения

Очная

Нальчик 2024

Рабочая программа дисциплины (модуля) «*Основы технологии электронной компонентной базы*» /сост. М.М. Оракова— Нальчик: КБГУ, 2024 г. 27 с.

Рабочая программа дисциплины (модуля) «Основы технологии электронной компонентной базы» предназначена для студентов очной формы обучения по специальности 12.05.01 Электронные и оптико-электронные приборы и системы специального назначения, 2курс, 4 семестр.

Рабочая программа дисциплины (модуля) «Основы технологии электронной компонентной базы» составлена с учетом федерального государственного образовательного стандарта высшего образования по специальности 12.05.01 Электронные и оптико-электронные приборы и системы специального назначения, утвержденного приказом Министерства образования и науки Российской Федерации «09» февраля 2018 г. № 93.

Содержание

. Цель и задачи освоения дисциплины (модуля)	4
2. Место дисциплины (модуля) в структуре ОПОП ВО	4
В.Требования к результатам освоения дисциплины (модуля)	4
4.Содержание и структура дисциплины (модуля)	5
Структура дисциплины (модуля)	5
5. Оценочные материалы для текущего и рубежного контроля успеваемости и промежу-	
гочной аттестации	7
5.1. Коллоквиум	7
5.2. Образцы тестовых заданий	8
Методические рекомендации по подготовке к тестированию	9
Критерии оценивания	10
5.3. Задания для лабораторных занятий	10
б.Промежуточная аттестация	10
7. Контроль курсовых работ	10
В.Методические материалы, определяющие процедуры оценивания знаний, умений,	
навыков и опыта деятельности	12
9.Учебно-методическое обеспечение дисциплины (модуля)	15
Основная литература	15
Дополнительная литература	15
Периодические издания	15
Интернет-ресурсы	15
10. Программное обеспечение современных информационно-коммуникационных техно-	
огий	15
11. Материально-техническое обеспечение дисциплины	15
Пист изменений (дополнений) в рабочей программе дисциплины (модуля)	16

1. Цель и задачи освоения дисциплины (модуля)

1.1.Цели освоения дисциплины:

-получение студентами комплекса теоретических и практических знаний, позволяющий им свободно ориентироваться в современной технологии производства полупроводниковых и диэлектрических материалов, нашедших широкое применение в электронной промышленности, на основе которых изготавливаются устройства интегральной функциональной электроники;

-формирование навыков экспериментальных исследований свойств материалов электронной и микроэлектронной техники, материалов наноэлектроники.

1.2.Основные задачи дисциплины:

изучение основных принципов технологии производства ИМС и принципов работы технологического оборудования, используемого для различных технологических операций в производстве электронной компонентной базы.

Изучение дисциплины направлено на подготовку специалистов, способных решать проблемы, возникающие при эксплуатации изделий электронной техники с учетом области, типов и задач профессиональной деятельности в соответствии с профессиональными стандартами: профессиональный стандарт 29.004 "Специалист в области проектирования и сопровождения производства оптотехники, оптических и оптикоэлектронных приборов и комплексов", утвержденный приказом Министерства труда и социальной защиты Российской Федерации от 24 декабря 2015 г. № 1141н.

2. Место дисциплины (модуля) в структуре ОПОП ВО

Дисциплина включена в часть, формируемую участниками образовательных отношений Б1.В.ДВ.02.02 учебного плана по специальности **12.05.01 Электронные и оптико-электронные приборы и системы специального назначения**, специализация: «Оптико-электронные информационно-измерительные приборы и системы»

Изучение дисциплины «Основы технологии электронной компонентной базы» базируется на следующих, ранее изучаемых, дисциплинах: «Молекулярная физика и термодинамика», «Материаловедение в приборостроении».

Освоение данной дисциплины, в свою очередь, необходимо для успешного усвоения, в последующем, специальных курсов по дисциплине: «Технология изготовления оптических изделий», «Современные технологии в оптико-электронной технике» и др.

3. Требования к результатам освоения дисциплины (модуля)

Процесс изучения дисциплины направлен на формирование элементов следующих компетенций в соответствии с ФГОС ВО и ОПОП ВО по данной специальности:

общепрофессиональной компетенции (ОПК-4):

Способен разрабатывать алгоритмы и компьютерные программы, пригодные для практического применения.

Код и наименование индикатора достижения компетенции:

ОПК-4.1. Способен разрабатывать алгоритмы решения задач своей профессиональной деятельности.

ОПК-4.2. Способен разрабатывать программное обеспечение для решения задач своей профессиональной деятельности.

Профессиональные компетенции (ПК-4):

Способен к внедрению технологических процессов производства и контроля качества оптотехники, оптико-электронных и оптических приборов, комплексов и их составных частей.

Код и наименование индикатора достижения компетенции:

- **ПК-4.1.** Способен обосновывать требования к изготовлению оптических, оптикоэлектронных, механических блоков, узлов и деталей с учетом требований технического задания и возможностей организации изготовителя.
- **ПК-4.2**. Способен применять компьютерные технологии и программные средства проектирования и конструирования оптических и оптико-электронных приборов и комплексов.
- **ПК-5.** Способен проектировать специальную оснастку, предусмотренную технологией изготовления оптотехники, оптических, оптикоэлектронных приборов, комплексов и их составных частей

Код и наименование индикатора достижения компетенции:

ПК-5.3. Способен применять компьютерные технологии и программные средства проектирования и конструирования оптических и оптико-электронных приборов и комплексов.

В результате изучения дисциплины (модуля) «Основы технологии электронной компонентной базы» студент должен:

знать:

- основы программирования: языки программирования (Python, Java, C++, и др.), принципы работы компьютера на низком уровне (процессор, память, устройства ввода/вывода).
- методы изготовления оптико-электронных приборов и способы организации их производства; методики и технические средства контроля и испытаний; способы повышения производтельности труда, технического уровня и эффективности производства.
- виды технологических процессов изготовления приборов, комплексов и их составных частей; виды технологических процессов сборки приборов и комплексов

уметь:

- работать с разными инструментами и средами разработки (IDE, системы контроля версий, библиотеки и т.д.)
- анализировать техническое задание на разработанные модели оптико-электронных приборов, отрабатывать изделия на технологичность, улучшать качество изготавливаемых изделий.
- планировать потребности в оборудовании, материально технических ресурсах и персонале для реализации технологического процесса; организовывать подготовку и настройку оборудования для изготовления приборов, комплексов и составных частей.

владеть:

- навыками работы с базами данных и написание эффективных запросов.
- методами внедрения технологических процессов и методикой производства, контроля и испытаний приборов, комплексов и их составных частей; методами отработки изделий на технологичность и улучшение качества изделий
- навыками организации материально технического обеспечения разработанного технологического процесса и наладки необходимого технологического оборудования.

4. Содержание и структура дисциплины (модуля)

В таблице 1 приводится описание содержания дисциплины, структурированное по разделам, с указанием по каждому разделу формы текущего контроля: защита лабораторной работы (ЛР), коллоквиум (К), тестирование (Т).

Таблица 1

	——————————————————————————————————————	~	TC	l
№ разде- ла	Наименование раздела	Содержа- ние раздела	Код контро- лируемой компе- тенции (или ее части)	Форма текуще- го кон- троля
1.	Общие сведения о планарной технологии производства интегральных микросхем	Общая схема технологического процесса. Групповая обработка. Минимальный топологический размер (МТР) — основной показатель уровня технологии. Степень интеграции микросхем. Динамика МТР и степени интеграции, закон Мура. Перспективы развития планарной технологии	ОПК-4.1 ОПК-4.2. ПК-4.1 ПК-4.2 ПК-5.3	К, Т, ЛР
2.	Изготовление по- лупроводниковых пластин	Механическая обработка полупроводниковых материалов. Шлифование полупроводниковых материалов. Методы исследования структурных нарушений полупроводниковых материалов при механической обработке. Полирование полупроводниковых материалов. Физико-химические основы процесса травления. Способы травления полупроводников.	ОПК-4.1 ОПК-4.2. ПК-4.1 ПК-4.2 ПК-5.3	К, Т, ЛР
3.	Способы получения p-n переходов	Диффузия. Механизмы диффузии. Элементы математического описания диффузионных процессов. Способы проведения диффузионных процессов. Диффузия из газовой и паровой фазы. Диффузия из поверхностных источников. Ионная имплантация. Физические основы ионной имплантации. Каналирование ионов. Особенности технологии ионной имплантации. Отжиг ионнолантации. Отжиг ионнолегированных слоев.	ОПК-4.1 ОПК-4.2. ПК-4.1 ПК-4.2 ПК-5.3	К, Т, ЛР
4.	Технология получения эпитаксиальных слоев	Методы эпитаксии полупроводников из газовой фазы. Легирование и автолегирование. Газофазная эпитаксия. Принципиальные схемы проведения эпитаксиальных процессов. Жидкостная эпитаксия и области ее применения. Молекулярно-лучевая эпитаксия	ОПК-4.1 ОПК-4.2. ПК-4.1 ПК-4.2 ПК-5.3	К, Т, ЛР

	T	Τ	T	T 1
5	Литографисеские	Основные фототехнические характе-	ОПК-4.1	К, Т, ЛР
	процессы в произ-	ристики фоторезистов. Способы по-	ОПК-4.2.	
	водстве интеграль-	лучения фотошаблонов. Анализ точ-	ПК-4.1	
	ных микросхем	ности литографического процесса.	ПК-4.2	
		Сопоставительный анализ предель-	ПК-5.3	
		ных возможностей процессов лито-		
		графии, основанных на применении		
		ультрафиолетового, лазерного и		
		рентгеновского излучений, электрон-		
		ных и ионных пучков.		
6	Металлизация в	Методы нанесения тонких пленок в	ОПК-4.1	К, Т, ЛР
	производстве инте-	вакууме: вакуумтермический, тер-	ОПК-4.2.	
	гральных микро-	моионный, электронно-лучевой, ион-	ПК-4.1	
	схем	ноплазменный (с использованием	ПК-4.2	
		разрядов на постоянном токе, а также	ПК-5.3	
		ВЧ- и СВЧ-разрядов), с помощью		
		автономных ионных источников.		
		Магнетронные распылительные си-		
		стемы. Алюминиевая и медная ме-		
		таллизация. Технология Damascene.		
7	Диэлектрические	Термодинамика процесса окисления	ОПК-4.1	К, Т, ЛР
	покрытия на крем-	кремния. Физическая модель окисле-	ОПК-4.2.	
	нии	ния кремния. Кинетика активного и	ПК-4.1	
		пассивного окисления полупровод-	ПК-4.2	
		ников. Формирование диэлектриче-	ПК-5.3.	
		ских пленок методом осаждения. По-		
		лучение МДПструктур. Материалы		
		затвора в субмикронных транзисто-		
		рах. High-k – диэлектрики. Техноло-		
		гия КНИ.		

Структура дисциплины (модуля)

Таблица 2. Общая трудоемкость дисциплины составляет 5 зачетных единицы (180 часов).

Вид работы Тру		рудоемкость, часы	
	4 семестр	Всего	
Общая трудоемкость (в часах)	180	180	
Контактная работа (в часах):	90	90	
Лекционные занятия (Л)	36	36	
Лабораторные работы (ЛР)	54	54	
Самостоятельная работа (в часах), в том числе контактная работа:	81	81	
Курсовая работа (КР)/ Курсовой проект (КП)	не предусмот- рен	не предусмот- рен	
Самостоятельное изучение разделов/тем	81	81	
Подготовка и прохождение промежуточной аттестации	9	9	
Вид промежуточной аттестации	Зачет	Зачет	

Лекционные занятия

Таблица 3

	таолица 3
№	Тема
1.	Общие сведения о планарной технологии производства интегральных микросхем
2.	Изготовление полупроводниковых пластин
3.	Способы получения р-п переходов
4.	Технология получения эпитаксиальных слоев
5.	Литографические процессы в производстве интегральных микросхем
6.	Металлизация в производстве интегральных микросхем
7.	Диэлектрические покрытия на кремнии

Лабораторные работы

Таблица 4.

No	Тема
1.	Составление технологического маршрута изготовления прибора
2.	Определение глубины нарушенного слоя после механической обработки кремниевых пла-
	стин методом косого шлифа.
3.	Получение пленок In на Si методом вакуумного напыления.
4.	Расчет технологических параметров термического испарения металлов в вакууме
5.	Получение пленок Pb на Si методом магнетронного распыления.
6.	Расчет технологических параметров тонкопленочных конденсаторов.

Самостоятельное изучение разделов дисциплины

Таблица 5.

No	Вопросы, выносимые на самостоятельное изучение
1	Основные требования к технологическим процессам сварки и пайки при сборке и монтаже
	интегральных микросхем.
2	Сборка на ленточных носителях.
3	Герметизация интегральных микросхем в корпусном и бескорпусном вариантах
4	. Методы испытания ИМС и измерение их параметров.

5. Оценочные материалы для текущего и рубежного контроля успеваемости и промежуточной аттестации

5.1. Коллоквиум

(контролируемые компетенции ОПК-4.1, ОПК-4.2, ПК-4.1, ПК-4.2, ПК-5.3)

В семестре проводятся 3 коллоквиума, которые оцениваются по 8 баллов каждый.

Вопросы, выносимые на коллоквиум

Первый коллоквиум

- 1. Общие сведения о планарной технологии производства интегральных микросхем.
- 2. Изготовление полупроводниковых пластин.
- 3. Способы получения р-п переходов

Второй коллоквиум

- 1. Технология получения эпитаксиальных слоев
- 2. Литографические процессы в производстве интегральных микросхем

Третий коллоквиум

- 1. Металлизация в производстве интегральных микросхем
- 2. Диэлектрические покрытия на кремнии
- 3. Сборка и испытание ИМС-структур

Рекомендации при подготовке к коллоквиуму

- проработать конспекты лекций по вопросам коллоквиума;
- прочитать основную и дополнительную литературу, рекомендованную по изучаемым вопросам:
- ответить на вопросы коллоквиума;
- при затруднениях, проконсультироваться с преподавателем.

Рекомендации при подготовке к коллоквиуму

- проработать конспекты лекций по вопросам коллоквиума;
- прочитать основную и дополнительную литературу, рекомендованную по изучаемым вопросам;
- ответить на вопросы коллоквиума;
- при затруднениях, проконсультироваться с преподавателем.

Критерии оценивания

Оценка				
неудовлетворительно 2 балла	удовлетворительно 4 балла	хорошо 6 баллов	отлично 8 баллов	
Студент не знает значительной части вопросов, допускает существенные ошибки в ответах на вопросы.	Студент поверх- ностно знает во- просы коллоквиу- ма, допускает не- точности в ответе на вопрос	Студент хорошо знает материал, грамотно и по существу излагает его, допуская некоторые неточности в ответе на вопрос.	Студент в полном объеме знает материал, грамотно и по существу излагает его, не допуская существенных неточностей в ответе на вопрос.	

5.2. Образцы тестовых заданий

(контролируемые компетенции ОПК-4.1, ОПК-4.2, ПК-4.1, ПК-4.2, ПК-5.3)

I:

- S: Вторым этапом проведения литографии является:
- -: подготовка пластин
- +: нанесение фоторезиста
- -: совмещение и экспонирование
- -: проявление фоторезиста
- -: травление нижележащего слоя
- -: удаление фоторезиста

I:

- S: Первым этапом проведения литографии является:
- +: подготовка пластин
- -: нанесение фоторезиста
- -: совмещение и экспонирование
- -: проявление фоторезиста
- -: травление нижележащего слоя
- -: удаление фоторезиста

I:

- S: Завершающим этапом проведения литографии является:
- -: подготовка пластин
- -: нанесение фоторезиста
- -: совмещение и экспонирование
- -: проявление фоторезиста
- -: травление нижележащего слоя
- +: удаление фоторезиста

I:

- S: Правильной последовательностью проведения основных этапов фотолитографии является:
- 1: подготовка пластин
- 2: нанесение фоторезиста
- 3: совмещение и экспонирование
- 4: проявление фоторезиста
- 5: травление нижележащего слоя
- 6: удаление фоторезиста

I:

- S: Подготока поверхности к нанесению фотослоя заключается в обработке специальными растворителями при температурах близких к:
- +: температуре кипения
- -: комнотной температуре
- -: температуре плавления подложки

I:

- S: Правильной последовательностью подготовки поверхности к нанесению фотослоя является:
- 1: обработка подложек специальными растворителями
- 2: Промывка подложек в проточной дистиллированной или деионизованной воде
- 3: Сушка подложек

I:

- S: При негативном фоторезисте под действием ультрафиолетового света происходит ... освещенных участков пленки.
- -: разрушение
- +: полимеризация

I:

S: При позитивном фоторезисте под действием ультрафиолетового света происходит ...

освещенных участков пленки. +: разрушение -: полимеризация I: S: Негативный фотошаблон- это фотошаблон, на котором изображение элементов схемы представлено в виде: +: светлых участков на непрозрачном фоне -: темных участков на непрозрачном фоне -: светлых участков на прозрачном фоне -: темных участков на прозраном фоне S: Позитивный фотошаблон- это фотошаблон, на котором изображение элементов схемы представлено в виде: +: непрозрачных для актиничного излучения участнок на светлом прозрачном фоне -: прозрачных для актиничного излучения участнок на светлом прозрачном фоне -: непрозрачных для актиничного излучения участнок на светлом непрозрачном фоне -: непрозрачных для актиничного излучения участнок на темном прозрачном фоне I: S: Фотошаблон- это пластина либо полимерная пленка со сформированным на ее поверхности рисунком элементов схем из материала, ...: +: не пропускающее актиничное излучение -: пропускающее актиничное излучение -: не пропускающее магнитное излучение -: пропускающее магнитное излучение S: Повышение разрешающей способности фоторезиста сопровождается ... к подложкам. +: снижением адгезии -: повышением алгезии -: снижением когезии I: S: К основным требованиям при выборе фоторезистов относятся (несколько верных отве-+: способность образования сплошных пленок +: хорошая адгезия к подложкам -: хорошая когезия к подложкам +: кислотоустойчивость +: высокая разрешающая способность S: Преимуществами метода пульверизации при нанесении фоторезиста является (несколько верных ответов): +: высокая однородность пленки по толщине +: отсутствие утолщений на краях +: отсутствие проколов -: относительно дешевизна -: простое оборудование S: Удаление фоторезиста проводится в:

S: При окончании процесса травления нижележащего слоя, пластины нереносятся:

+: кислородной плазме

-: проточной дистиллированной воде -: проточной деионизованной воде

```
+: под водяной душ
-: в вакуумную камеру
-: в кислородную плазму
I:
S: Травление нижележащего слоя осуществляется в растворе ... кислоты:
+: соляной
-: плавиковой
-: серной
-: азотной
-: кремниевой
S: После формирования в слое фоторезиста скрытого рисунка следует операция ...:
+: проявления
-: травления
-: сушки
-: совмещения
I:
S: Существуют следующие методы экспонирования при изготовлении рабочих копий фо-
тошаблонов (несколько верных ответов):
+: контактное
+: проекционное
+: экспонирование с зазором
-: контактно-проекционное
-: фотоэмульсионное
I:
S: При больших скоростях вращения центрифуги число проколов ...:
+: увеличивается
-: уменьшается
-: не изменяется
```

5.3. Типовые задания для самостоятельной работы

(контролируемые компетенции ОПК-4.1, ОПК-4.2, ПК-4.1, ПК-4.2, ПК-5.3)

- 1. Классифицировать и перечислить основные этапы технологии изготовления интегральных микросхем.
- 2. Перечислить основные и вспомогательные материалы, используемые в производстве полупроводниковых приборов и ИС.
- 3. Перечислить основные технологические процессы получения эпитаксиальных пленок на полупроводниковых подложках.
- 4. Провести сравнительный анализ различных способов эпитаксиального наращивания.
- 5. Перечислить особенности электронно-ионной технологии.

5.4. Методические рекомендации по подготовке к тестированию

 ${
m Tecты}$ — это вопросы или задания, предусматривающие конкретный, краткий, четкий ответ на имеющиеся эталоны ответов. При самостоятельной подготовке к тестированию студенту необходимо:

- готовясь к тестированию, проработать информационный материал по дисциплине. Проконсультироваться с преподавателем по вопросу выбора учебной литературы;
- четко выясните все условия тестирования заранее. Знать, сколько тестов Вам будет предложено, сколько времени отводится на тестирование, какова система оценки результатов и т.д.
- приступая к работе с тестами, внимательно и до конца прочтите вопрос и предлагаемые варианты ответов. Выберите правильные (их может быть несколько). На отдельном листке ответов выпишите цифру вопроса и буквы, соответствующие правильным ответам;
- в процессе решения желательно применять несколько подходов в решении задания. Это позволяет максимально гибко оперировать методами решения, находя каждый раз оптимальный вариант.
- если Вы встретили чрезвычайно трудный для Вас вопрос, не тратьте много времени на него. Переходите к другим тестам. Вернитесь к трудному вопросув конце.
- обязательно оставьте время для проверки ответов, чтобы избежать механических ошибок.

Критерии оценивания

Оценка					
неудовлетворительно 0 удовлетворительно 3 хорошо отлично баллов балла 4 балла 5 баллов					
Менее 50 % правильно вы- полненных заданий.	50-70% правильно выполненных заданий.	71-85% правильно выполненных заданий.	86-100% правильно выполненных заданий.		

5.5. Задания для лабораторных занятий

(контролируемые компетенции ОПК-4.1, ОПК-4.2, ПК-4.1, ПК-4.2, ПК-5.3)

Лабораторный практикум является важным элементом обучения, т.к. прививает навыки самостоятельной работы на различном лабораторном оборудовании и умение пользоваться различными приборами и инструментами.

5.6. Методические указания

Выполнение каждой лабораторной работы складывается из следующих этапов.

- 1. Самостоятельная подготовка студентов к работе. Перед началом работы студенты должны четко представлять себе цель работы, сущность ожидаемых результатов. Для этого необходимо подготовиться теоретически. Студенты, не подготовившиеся к работе в соответствии с этими требованиями, к выполнению работы не допускаются.
- 2. Проведение эксперимента. Этот этап осуществляется в соответствии с методическими указаниями, которые содержатся в описании к каждой работе. Лабораторные работы на персональном компьютере студент может начать только после собеседования с преподавателем и получения соответствующего допуска. При работе в лаборатории необходимо строго выполнять все правила техники безопасности и указания преподавателя.

3. Составление отчета о проделанной работе. К отчету о выполненной работе предъявляются следующие требования:

Отчет должен содержать исчерпывающие данные, как о цели работы, так и о результатах в следующей последовательности:

- задание;
- теоретическое обоснование темы;
- экспериментальные результаты;
- общие выводы о работе и заключение.

Текст отчета должен быть написан аккуратно и разборчиво от руки или представлен в виде распечатки, после компьютерной верстки. В обоих случаях текст должен представлять собой логическое изложение существа вопроса. Отчет должен быть понятен для каждого читающего без каких-либо дополнительных вопросов у составителей отчета.

4. После представления отчета студент должен иметь, как минимум, поверхностные знания по контрольным вопросам к работе, имеющимся в методических указаниях, и ему выставляется балл, которым оценена данная лабораторная работа.

6.Промежуточная аттестация

(контролируемые компетенции ОПК-4.1, ОПК-4.2, ПК-4.1, ПК-4.2, ПК-5.3)

Список основных вопросов к устному зачету

- 1. Общая схема технологического процесса. Групповая обработка.
- 2. Минимальный топологический размер (МТР) основной показатель уровня технологии. Степень интеграции микросхем.
- 3. Динамика МТР и степени интеграции, закон Мура.
- 4. Перспективы развития планарной технологии.
- 5. Механическая обработка полупроводниковых материалов.
- 6. Шлифование полупроводниковых материалов.
- 7. Методы исследования структурных нарушений полупроводниковых материалов при механической обработке.
- 8. Полирование полупроводниковых материалов.
- 9. Физико-химические основы процесса травления. Способы травления полупроводников.
- 10. Диффузия. Механизмы диффузии.
- 11. Элементы математического описания диффузионных процессов.
- 12. Способы проведения диффузионных процессов.
- 13. Диффузия из газовой и паровой фазы.
- 14. Диффузия из поверхностных источников.
- 15. Ионная имплантация. Физические основы ионной имплантации.
- 16. Каналирование ионов.
- 17. Особенности технологии ионной имплантации.
- 18. Отжиг ионно-легированных слоев.
- 19. Методы эпитаксии полупроводников из газовой фазы.
- 20. Легирование и автолегирование.
- 21. Газофазная эпитаксия.
- 22. Принципиальные схемы проведения эпитаксиальных процессов.
- 23. Жидкостная эпитаксия и области ее применения.
- 24. Молекулярно-лучевая эпитаксия.
- 25. Способы получения фотошаблонов.
- 26. Анализ точности литографического процесса.
- 27. Сопоставительный анализ предельных возможностей процессов литографии, основанных на применении ультрафиолетового, лазерного и рентгеновского излучений, электронных и ионных пучков.
- 28. Методы нанесения тонких пленок в вакууме: вакуумтермический, термоионный, электронно-лучевой, ионноплазменный (с использованием разрядов на постоянном токе, а также ВЧ- и СВЧ-разрядов), с помощью автономных ионных источников.
- 29. Магнетронные распылительные системы.
- 30. Алюминиевая и медная металлизация. Технология Damascene.

- 31. Термодинамика процесса окисления кремния.
- 32. Физическая модель окисления кремния.
- 33. Кинетика активного и пассивного окисления полупроводников.
- 34. Формирование диэлектрических пленок методом осаждения.
- 35. Получение МДПструктур.
- 36. Материалы затвора в субмикронных транзисторах. High-k диэлектрики.
- 37. Технология КНИ.

Методические рекомендации при подготовке к зачету

Подготовка студентов к зачету включает проработку лекций, в течении семестра и непосредственную подготовку в дни, предшествующие зачету, включая подготовку к коллоквиумам, тестированию, выполнению лабораторных работ и их защиту.

Для подготовки к ответам на вопросы (они выдаются в конце семестра) студент должен использовать не только курс лекций, но и основную и дополнительную литературу для выработки умения давать развернутые ответы на поставленные вопросы.

В ходе подготовки студенту необходимо обращать внимание не только на уровень запоминания, но и на степень понимания изучаемых вопросов. А это достигается не простым заучиванием, а усвоением прочных систематизированных знаний аналитическим мышлением. Следовательно, непосредственная подготовка к зачету должна в разумных пропорциях сочетать и запоминание, и понимание программного материала.

Критерии оценивания

	Оценка					
неудовлетворительно 0 удовлетворительно баллов 3 балла		хорошо 4 балла	отлично 5 баллов			
Посещение менее 50 % лекционных и практических занятий.	Посещение не менее 60% лекционных и практических занятий.	Посещение не менее 70 % лекционных и практических занятий.	Посещение не менее 85% лекционных и практических занятий.			
Студент не знает значительной части материала, допускает существенные ошибки в ответах на вопросы.	Студент поверхностно знает материал основных разделов и тем учебной дисциплины, допускает неточности в ответе на вопрос.	Студент хорошо знает материал, грамотно и по существу излагает его, допуская некоторые неточности в ответе на вопрос.	Студент в полном объёме знает материал, грамотно и по существу излагает его, не допуская существенных неточностей в ответе на вопрос.			

7. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и опыта деятельности

Основные процедуры по оценке знаний, умений и навыков по дисциплине «Основы технологии электронной компонентной базы», осуществляются в соответствии с Положением о балльно-рейтинговой системе (БРС) аттестации обучающихся по образовательным программам высшего образования — программ бакалавриата, программ специалитета и программ магистратуры Кабардино-Балкарского государственного университета им. Х.М. Бербекова (kbsu@mail.ru Локальные нормативные акты КБГУ).

В Положении о БРС определены:

- виды и формы аттестации,
- порядок допуска и прохождения промежуточной аттестации,
- отработка текущей, рубежной, промежуточной аттестации и отчисление из образовательной организации,
- порядок организации, проведения и представления результатов балльно-рейтинговых мероприятий,
 - организация контроля проведения балльно-рейтинговых контрольных мероприятий,
 - особенности организации и проведения балльно-рейтинговых контрольных мероприятий

для инвалидов и лиц с ограниченными возможностями здоровья,

- оформление, учет и хранения нормативной документации.

9.Учебно-методическое обеспечение дисциплины (модуля)

Основная литература

- 1. Раскин, А. А. Технология материалов микро-, опто- и наноэлектроники: учеб. пособие для вузов. Ч.2 / А. А. Раскин, В. К. Прокофьева. М.: БИНОМ. Лаборатор. знаний, 2015. 165 с. https://rusneb.ru/catalog/000199 000009 007486915/?ysclid=m3rbgpgyce464379752
- 2. Рощин, В. М. Технология материалов микро-, опто- и наноэлектроники: учеб. пособие для вузов. Ч.2 / В. М. Рощин, М. В. Силибин. М.: БИНОМ. Лаборатор. знаний, 2012. 180 с. https://rusneb.ru/catalog/000199_000009_007486915/?ysclid=m3rbhfjxph665833837
 Дополнительная литература
- 3. Герасименко, Пархоменко, .Ю. Н. Кремний материал наноэлектроники. М.: Техносфера, 2007. 351 с. https://rusneb.ru/catalog/000199 000009 003082948/?ysclid=m3rbyit1v842647644
- 4. Сошина Т.О., Трофимов В. Н. Новые материалы и технологии: Учебное пособие для вузов. Издательство "Лань", 2023, 192 стр. https://e.lanbook.com/book/356036
- 5. Таиров Ю.М., Цветков В.Ф. Технология полупроводниковых и диэлектрических материалов. М., Высшая школа. 1986 г. https://rusneb.ru/catalog/002178_000020_BGUNB-BEL%7C%7C%7C%7C0000315266/?ysclid=m3rbzw414k732838900

Периодические издания

Перечень периодических изданий, получаемых библиотекой КБГУ, в которых студент может ознакомиться с современными достижениями в области схемотехники: Электронная промышленность, Микроэлектроника, Электроника НТБ, Нано и микросистемная техника.

Интернет-ресурсы

- 1. http://portal.tpu.ru/SHARED/v/VALOTOV/Nayka/Tab1/4.pdf
- 2. https://repo.ssau.ru/bitstream/Uchebnye-izdaniya/Osnovy-tehnologii-elektronnoi-komponentnoi-bazy-98334/1/978-5-7883-1750-2

Перечень актуальных электронных информационных баз данных, к которым обеспечен доступ пользователям КБГУ (2024-2025 уч.г.)

№п/п	Наименование электронного ресурса	Краткая характери- стика	Адрес сайта	Наименование ор- ганизации- владельца; рекви- зиты договора	Условия доступа
		РЕСУРСЫ ДЈ	ІЯ ОБРАЗОВАНИЯ		
1.	ЭБС «Лань»	Электронные версии книг ведущих издательств учебной и научной литературы (в том числе университетских издательств), так и электронные версии пет	https://e.lanbook.co m/	ООО «ЭБС ЛАНЬ» (г. Санкт- Петербург) Договор №55/ЕП- 223 от 08.02.2024 г. Активен до 15.02.2025г.	Полный доступ (регистрация по IP-адресам КБГУ)

		риодических изданий			
		по различным обла- стям знаний.			
2.	Национальная	Объединенный элек-	https://rusneb.ru/	ФГБУ «Российская	Авторизо-
2.	электронная	тронный каталог	https://tushco.ru/	государственная	ванный до-
	библиотека	фондов российских		библиотека»	ступ с АРМ
	РГБ	библиотек, содер-		Договор	библиотеки
		жащий		№101/НЭБ/1666-п	(ИЦ,
		4 331 542 электрон-		от 10.09.2020г.	ауд.№115)
		ных документов об-		Бессрочный	
		разовательного и			
		научного характера			
		по различным отрас-			
		лям знаний			
3.	ЭБС	107831 публикаций, в	http://iprbookshop.r	ООО «Ай Пи Эр	Полный
	«IPSMART»	т.ч.: 19071 – учебных	<u>u/</u>	Медиа»	доступ (ре-
		изданий, 6746 –	_	(г. Красногорск,	гистрация
		научных изданий,		Московская обл.)	по IP-
		700 коллекций, 343		№156/24П	адресам
		журнала ВАК, 2085		от 04.04.2024 г.	КБГУ)
		аудиоизданий.		срок предоставле-	
				ния лицензии: 12	
4.	ЭБС «Юрайт»	Электронные версии	https://urait.ru/	мес. ООО «Электронное	Полный
7.	для ВО	8000 наименований	https://trait.ru/	издательство	доступ (ре-
	AIII DO	учебной и научной		ЮРАЙТ»	гистрация
		литературы изда-		(г. Москва)	по ІР-
		тельств «Юрайт» для		Договор №54/ЕП-	адресам
		ВО и электронные		223	КБГУ)
		версии периодиче-		От 08.02.2024 г.	
		ских изданий по раз-		Активен по	
		личным областям знаний.		28.02.2025 г.	
			Ы ДЛЯ НАУКИ	L	
	T				
5.	Научная элек-	Электр. библиотека	http://elibrary.ru	ООО «НЭБ»	Полный
	тронная биб-	научных публикаций		Лицензионное со-	доступ
	лиотека (НЭБ РФФИ)	- около 4000 ино- странных и 3900 оте-		глашение №14830 от 01.08.2014г.	
	ΓΦΦΗ)	чественных научных		Бессрочное	
		журналов, рефераты		весеро пос	
		публикаций 20 тыс.			
		журналов, а также			
		описания 1,5 млн.			
		зарубежных и рос-			
		сийских диссертаций;			
		2800 росс. журналов			
		на безвозмездной основе			
6.	Президентская	Более 500 000 элек-	http://www.prlib.ru	ФГБУ «Президент-	Авторизо-
0.	библиотека им.	тронных документов	impar a a a prinoriu	ская библиотека	ванный до-
	Б.Н. Ельцина	по истории Отече-		им. Б.Н. Ельцина»	ступ из
		ства, российской гос-		(г. Санкт-	библиотеки
		ударственности, рус-		Петербург)	(ауд. №115,
		скому языку и праву		Соглашение от	214)
				15.11.2016 г. Бессрочный	
7.	Polpred.com.	Обзор СМИ России и	http://polpred.com	ооо «Полпред	Доступ по
'*	Новости. Обзор	зарубежья. Полные	in porproduction	справочники»	IP-адресам
	СМИ. Россия и	тексты + аналитика		Безвозмездно (без	КБГУ
	зарубежье	из 600 изданий по 53		официального до-	
<u> </u>		•			•

	отраслям	говора)	

10.Программное обеспечение современных информационно- коммуникационных технологий

- 1. Студенты имеют доступ через Интернет доступ к единому образовательному порталу, где в открытом доступе имеются ресурсы учебно-методической литературы, являющиеся разработками ведущих вузов России.
- 2. Для рейтингового контроля используется система компьютерного тестирования на базе программного обеспечения Moodle.
- 3. В рамках обеспечения применения компьютерных технологий в образовательном процессе имеются специализированные компьютерные классы с современным программным обеспечением и имеющим выход в Интернет.

11. Материально-техническое обеспечение дисциплины

Для реализации рабочей программы дисциплины имеются учебные аудитории для проведения учебных занятий, оснащенные оборудованием и техническими средствами обучения, а также помещения для самостоятельной работы, оснащенные компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду КБГУ.

Перечень материально-технического обеспечения дисциплины включает в себя:

- Учебная аудитория для проведения учебных занятий 418, которая оснащена оборудованием и техническими средствами обучения (ноутбук, проектор, интерактивная доска, доска стационарная). Комплект учебной мебели 38 посадочных мест.
- Компьютерный класс для проведения лабораторных и практических занятий, текущего контроля, промежуточной аттестации 324, который оснащен комплектом учебной мебели, компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду КБГУ. 14 посадочных мест. Компьютерная техника обеспечена необходимым комплектом лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства. Электроннобиблиотечные системы и электронная информационно-образовательная среда КБГУ обеспечивают доступ (удаленный доступ) обучающимся, к современным профессиональным базам данных и информационным справочным системам.
- Помещение для самостоятельной работы 311. Электронный читальный зал №3. Читальный зал естественных и технических наук, оснащен комплектом учебной мебели, компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду КБГУ. 22 посадочных места. Компьютерная техника обеспечена необходимым комплектом лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства. Электронно-библиотечные системы и электронная информационно-образовательная среда КБГУ обеспечивают доступ (удаленный доступ) обучающимся, к современным профессиональным базам данных и информационным справочным системам.
- Помещение для самостоятельной работы 115. Электронный читальный зал №1, оснащен комплектом учебной мебели, компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду КБГУ. 28 посадочных мест. Компьютерная техника обеспечена необходимым комплектом лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства. Электронно-библиотечные системы и электронная информационно-образовательная среда КБГУ обеспечивают доступ (удаленный доступ) обучающимся, к современным профессиональным базам данных и информационным справочным системам.

Для проведения занятий имеется необходимый комплект лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства.

Список лицензионного программного обеспечения

- Антивирусное средство для защиты ПК (продление) Kaspersky Endpoint Security.

- Система оптического распознавания текста (продление) SETERE OCR
- Многофункциональный редактор (продление) Content Reader PDF 15 Business.
- РЕД ОС. Техническая поддержка для образовательных учреждений на 1 год. Конфигурация: Сервер. Стандартная редакция. Базовый уровень.
- РЕД ОС. Техническая поддержка для образовательных учреждений на 1 год. Конфигурация: Рабочая станция. Стандартная редакция. Базовый уровень.
- Российский кроссплатформенный пакет приложений для совместной работы с офисными документами Р7-Офис.
- Многофункциональный кроссплатформенный графический редактор AliveColors Business
- Программный продукт, основанный на исходном коде свободного проекта Wine, предназначенный для запуска Windows-приложений на операционных системах семейства Linux. свободно распространяемые программы:

7Zip;

DjVu Plug-in;

Система локальной сети КБГУ предоставляет возможность одновременной работы большого количества пользователей как в локальной сети вуза, так и через сеть «Интернет» с соблюдением требований информационной безопасности и ограничением доступа к информации. Электронная информационно — образовательная среда КБГУ позволяет осуществлять работу обучающихся из любой точки доступа, в том числе извне вуза.

Особенности реализации дисциплины для инвалидов и лиц с ограниченными возможностями здоровья

Для студентов с ограниченными возможностями здоровья созданы специальные условия для получения образования. В целях доступности получения высшего образования по образовательным программам инвалидами и лицами с ограниченными возможностями здоровья университетом обеспечивается:

- 1. Альтернативная версия официального сайта в сети «Интернет» для слабовидящих;
- 2. Для инвалидов с нарушениями зрения (слабовидящие, слепые) присутствие ассистента, оказывающего обучающемуся необходимую помощь, дублирование вслух справочной информации о расписании учебных занятий; наличие средств для усиления остаточного зрения, брайлевской компьютерной техники, видеоувеличителей, программ невизуального доступа к информации, программ-синтезаторов речи и других технических средств приема-передачи учебной информации в доступных формах для студентов с нарушениями зрения;
- 3.Для инвалидов и лиц с ограниченными возможностями здоровья по слуху (слабослышащие, глухие) –звукоусиливающая аппаратура, мультимедийные средства и другие технические средства приема-передачи учебной информации в доступных формах;
- 4. Для инвалидов и лиц с ограниченными возможностями здоровья, имеющих нарушения опорно-двигательного аппарата, созданы материально-технические условия обеспечивающие возможность беспрепятственного доступа обучающихся в учебные помещения, объекту питания, туалетные и другие помещения университета, а также пребывания в указанных помещениях (наличие расширенных дверных проемов, поручней и других приспособлений).

Обучающиеся из числа лиц с ограниченными возможностями здоровья обеспечены электронными образовательными ресурсами в формах, адаптированных к ограничениям их здоровья.

Обучающимся с ограниченными возможностями здоровья предоставляются специальные учебники и учебные пособия, иная учебная литература, специальные технические средства обучения коллективного и индивидуального пользования, предоставление услуг ассистента (помощника), оказывающего обучающимся необходимую техническую помощь, а также услуги сурдопереводчиков и тифлосурдопереводчиков.

- а) для слабовидящих:
- на экзамене присутствует ассистент, оказывающий студенту необходимую техническую помощь с учетом индивидуальных особенностей (он помогает занять рабочее место, передвигаться, прочитать и оформить задание, в том числе записывая под диктовку);
- задания для выполнения, а также инструкция о порядке проведения зачете/экзамена оформляются увеличенным шрифтом;
 - задания для выполнения на экзамене зачитываются ассистентом;
 - письменные задания выполняются на бумаге, надиктовываются ассистенту;

- обеспечивается индивидуальное равномерное освещение не менее 300 люкс;
- студенту для выполнения задания при необходимости предоставляется увеличивающее устройство;
 - в) для глухих и слабослышащих:
- на зачете/экзамене присутствует ассистент, оказывающий студенту необходимую техническую помощь с учетом индивидуальных особенностей (он помогает занять рабочее место, передвигаться, прочитать и оформить задание, в том числе записывая под диктовку);
 - зачет/экзамен проводится в письменной форме;
- обеспечивается наличие звукоусиливающей аппаратуры коллективного пользования, при необходимости поступающим предоставляется звукоусиливающая аппаратура индивидуального пользования;
 - по желанию студента экзамен может проводиться в письменной форме;
- д) для лиц с нарушениями опорно-двигательного аппарата (тяжелыми нарушениями двигательных функций верхних конечностей или отсутствием верхних конечностей):
- письменные задания выполняются на компьютере со специализированным программным обеспечением или надиктовываются ассистенту;
 - по желанию студента экзамен проводится в устной форме.

Приложение 1

Лист изменений (дополнений) в рабочей программе дисциплины (модуля) «Основы технологии электронной компонентной базы» по специальности 12.05.01 Электронные и оптико-электронные приборы и системы специального назначения, специализация: «Оптико-электронные информационно-измерительные приборы и системы» на 2025 – 2026 учебный год

№ п/п	Элемент (пункт) РПД	Перечень вносимых изменений	Примечание

электроники и цифровых информационных техно- логий, протокол № от ««2024 г.	
2024	
Заведующий кафедрой	
/ <u>Р.Ш. Тешев</u> / расшифровка подписи да	та