ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«КАБАРДИНО-БАЛКАРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМ. Х.М.БЕРБЕКОВА»

КОЛЛЕДЖ ДИЗАЙНА

утверждаю Директор колледжа дизайна КБГУ Канлоев А.М

Комплект контрольно-измерительных материалов

по дисциплине СГ.07 МАТЕМАТИКА

для специальности 42.02.01 Реклама

Рассмотрен и одобрен на заседании ПЦК «Общеобразовательных, гуманитарных и социально-экономических дисциплин»

Протокол № <u>6</u> от « <u>19</u> » <u>марга</u> 2025 г. Председатель ПЦК <u>Ме Лу</u> Теунова М.В.

1. Общие положения

Контрольно-измерительные материалы (КИМ) предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «Математика».

КИМ включают контрольные материалы для проведения рубежного контроля и промежуточной аттестации в форме экзамена.

КИМ разработаны в соответствии с ППССЗ специальности СПО 42.02.01 Реклама

Результаты обучения	Критерии оценки	Методы оценки	
Перечень знаний, осваиваемых в	Характеристики	Входной	
рамках дисциплины:	демонстрируемых знаний,	контроль знаний:	
– основные понятия и	которые могут быть проверены:	оценка	
свойства функции одной	- знает основные понятия и	результатов	
переменной;	свойства функции одной	выполнения теста	
 основные понятия теории 	переменной;	Текущий	
пределов;	– знает основные понятия	контроль:	
 основные понятия теории 	теории пределов;	оценка	
производной и её	– знает основные понятия	результатов	
приложение;	теории производной и её	выполнения	
 основные понятия теории 	приложение;	теоретических	
неопределённого и	– знает основные понятия	тестов,	
определённого	теории неопределённого и	математических	
интегралов;	определённого интегралов;	диктантов,	
 определение и свойства 	– знает определение и	мультимедийных	
матриц, определителей;	свойства матриц,	интерактивных	
– определения и понятия,	определителей;	упражнений	
относящиеся к СЛУ,	– знает определения и	теоретической	
необходимые для	понятия, относящиеся к	направленности.	
решения СЛУ;	СЛУ, необходимые для	Промежуточный контроль:	
– формулы простого и	решения СЛУ;	экзамен	
сложного процентов;	 знает формулы простого и 	Экзамен	
 основные понятия теории 	сложного процентов;		
вероятности и	– знает основные понятия		
математической	теории вероятности и		
статистики, необходимые	математической		
для решения	статистики необходимые		
экономических задач.	для решения		
п ,	экономических задач.		
Перечень умений, осваиваемых в	Характеристики	Оценка	
рамках дисциплины:	демонстрируемых умений:	результатов	
– применять основные	– применяет основные	выполнения	
понятия и свойства	понятия и свойства	практической	
функции одной	функции одной	работы	
переменной при решении	переменной при решении	Экспертное наблюдение за	
задач;	задач;	наблюдение за ходом	
 раскрывать 	 умеет раскрывать 	выполнения	
неопределённости при вычислении пределов;	неопределённости при вычислении пределов;	практической	
_	<u> </u>	работы	
 вычислять производную 	 вычисляет производную функции 	Paccin	
функции одной	функции одной		

- переменной, производную сложной функции;
- исследовать функцию при помощи производной и строить график функции;
- вычислять неопределённый интеграл методом замены переменной и методом интегрирования по частям;
- применять формулу
 Ньютона-Лейбница при
 вычислении
 определённого
 интеграла;
- вычислять площадь плоских фигур;
- выполнять линейные операции над матрицами, умножение матриц, находить обратные
- матрицы;
- вычислять значение определителей;
- решать СЛУ методом Крамера, методом обратной матрицы;
- вычислять количества размещений, перестановок, сочетаний;
- применять формулы вычисления простого и сложного процентов для решения экономических задач;
- применять формулы теории вероятности и математической статистики для решения экономических задач;
- рассчитывать бухгалтерские показатели, применяемые в экономических расчётах.

- переменной, производную сложной функции;
- исследует функцию при помощи производной и строить график функции;
- вычисляет неопределённый интеграл методом замены переменной и методом интегрирования по частям;
- применяет формулу
 Ньютона-Лейбница при вычислении
 определённого интеграла;
- вычисляет площадь плоских фигур;
- выполняет линейные операции над матрицами, умножение матриц, находить обратные матрицы;
- вычисляет значение определителей;
- решает СЛУ методом Крамера, методом обратной матрицы;
- количества размещений, перестановок, сочетаний;
- применяет формулы вычисления простого и сложного процентов для решения экономических задач;
- применяет формулы теории вероятности и математической статистики для решения экономических задач;
- рассчитывает
 бухгалтерские показатели,
 применяемые в
 экономических расчётах.

Оценка результатов выполнения индивидуальных, групповых заданий И заданий проектного характера. Оценка результатов выполнения презентаций. Оценка результатов выполнения аудиторных самостоятельных работ

2. Структура контрольных заданий Задания на 1 рубежный контроль

Рубежная контрольная работа №1.

ВАРИАНТ №1.

a)
$$\lim_{x \to 2} \frac{x^2 + x - 6}{x - 2}$$
; 6) $\lim_{x \to \infty} \frac{2x}{x - 1}$.

$$6) \lim_{x \to \infty} \frac{2x}{x - 1}.$$

- 2. Исследовать на максимум и минимум функцию $y = x^3 12x^2 + 36x 10$.
- 3. Найти производные следующих функций:

a)
$$y = \frac{\sin x - \cos x}{\sin x + \cos x}$$
; 6) $y = e^x \cdot (x^3 + 3x^2 + 6x + 6)$

a)
$$\lim_{x \to -5} \frac{x^2 + 4x - 5}{x + 5}$$
; $6) \lim_{x \to \infty} \frac{1 - x^2}{1 + 2x^2}$

$$6 \lim_{x \to \infty} \frac{1 - x^2}{1 + 2x^2}$$

- Исследовать на максимум и минимум функцию $y = x^3 2x^2 4x + 3$.
- 3. Найти производные следующих функций:

a)
$$y = \ln \sin x + \frac{1}{2} \cos^2 x$$
;

$$6) y = e^{\arcsin \frac{1}{x}}$$

ВАРИАНТ №3.

6)
$$\lim_{x \to \infty} \frac{x^2 + x^3}{x^4 + x^5}$$

- 2. Исследовать на максимум и минимум функцию $y = -\frac{1}{3}x^3 + x^2 + 3x 4$.
- 3. Найти производные следующих функций:

a)
$$y = \frac{x^3 - 1}{x^3 + 1}$$
; 6) $y = \frac{1}{4}tg^4x - \frac{1}{2}tg^2x - \ln\cos x$.

a)
$$\lim_{x\to 3} \frac{x^3-27}{x-3}$$
;

a)
$$\lim_{x \to 3} \frac{x^3 - 27}{x - 3}$$
; 6) $\lim_{x \to \infty} \frac{2x^2 - 4x = 5}{x^3 + 4}$

2. Исследовать на максимум и минимум функцию

$$y = x^3 + x^2 - 8x = 1.$$

3. Найти производные следующих функций:

a)
$$y = \arcsin \sqrt{x}$$
; 6) $y = (x^3 - 2x^2 = 5)^5$.

ВАРИАНТ №1.

4. Найти a)
$$\lim_{x\to 2} \frac{x^2 + x - 6}{x - 2}$$
; 6) $\lim_{x\to \infty} \frac{2x}{x - 1}$.

$$6) \lim_{x \to \infty} \frac{2x}{x - 1}$$

a)
$$\int \frac{xdx}{2\sqrt{x}}$$
:

Найти a)
$$\int \frac{xdx}{2\sqrt{x}}$$
: 6) $\int \frac{\cos xdx}{1+\sin^2 x}$.

Найти производные следующих функций:

7. a)
$$y = \frac{\sin x - \cos x}{\sin x + \cos x}$$
; 6) $y = e^x \cdot (x^3 + 3x^2 + 6x + 6)$

8. В ящике имеется 10 деталей; из них 6 деталей первого сорта и 4 детали второго сорта. Из ящика наугад берутся 4 детали. Какова вероятность того, что среди них не будет ни одной детали второго сорта?

9. В первой урне 4 белых и 6 черных шаров. Во второй урне 1 белый и 9 черных шаров. Из наудачу взятой урны вынули один шар. Тогда вероятность того, что этот шар окажется белым, равна...

ВАРИАНТ №5.

1.Найти a)
$$\lim_{x \to -5} \frac{x^2 + 4x - 5}{x + 5}$$
; 6) $\lim_{x \to \infty} \frac{1 - x^2}{1 + 2x^2}$

2.Найти a)
$$\int \frac{2\cos^2 \theta + 1}{\cos^2 \theta} dx$$
: б) $\int \frac{\sqrt{\ln x + 1}}{x} dx$

3. Найти производные следующих функций:

- 4.Игральная кость бросается один раз. Тогда вероятность того, что на верхней грани выпадет *не менее трех очков*, равна...
- 5.В первой урне 2 черных и 8 белых шаров. Во второй урне 3 белых и 7 черных шаров. Из наудачу взятой урны вынули один шар. Тогда вероятность того, что этот шар окажется белым, равна...

ВАРИАНТ №6

1.Найти a)
$$\lim_{x\to 3} \frac{x-3}{x^2-6x+9}$$
; b) $\lim_{x\to \infty} \frac{x^2+x^3}{x^4+x^5}$

2.Найти a)
$$\int \frac{2x+3}{\sqrt{1-x^2}} dx$$
: 6) $\int \frac{e^{2x}+e^x \cdot \sin x}{e^x} dx$.

3. Найти производные следующих функций:

a)
$$y = \frac{x^3 - 1}{x^3 + 1}$$
;
 6) $y = \frac{1}{4}tg^4x - \frac{1}{2}tg^2x - \ln\cos x$.

- 4.Три стрелка независимо друг от друга производят по одному выстрелу. Их вероятности попадания в цель равны, соответственно, 0,5; 0,7; 0,6. Определить вероятность хотя бы одного попадания
- 5.В первой урне 5 белых и 5 черных шаров. Во второй урне 3 черных и 7 белых шаров. Из наудачу взятой урны вынули один шар. Тогда вероятность того, что этот шар окажется белым, равна...

Критерии оценки

Мах количество баллов -15.

14 – 15 баллов: все задания выполнены верно;

12 – 13 баллов: 4 задания выполнены верно, а одно содержит негрубые ошибки;

10 - 11 баллов: 3 задания выполнено верно;

0 баллов - выполнено верно менее двух заданий.

Рубежная контрольная работа №2

Вариант - 1

- 1 Абонент забыл две последние цифры телефона и набирает их наудачу, при этом он помнит, что эти цифры различные. Определить число безуспешных попыток в наихудшем случае?
- 2. Опыт бросание двух костей. События

 $C_1 = \{$ ни на одной кости нет пятерки $\}$

 $C_2 = \{$ на одной из костей пятерка, на другой - нет $\}$

Образуют ли эти события полную группу? Совместны ли эти события? Определить вероятности этих событий.

- 3. Игральная кость бросается два раза. Найти вероятность того, что сумма выпавших очков не больше 9.
- 4. Случайная величина X имеет распределение

Пусть $Y = X^2$. Найти распределение вероятностей с. величины Y, ее математическое ожидание и дисперсию.

Вариант – 2

- 1. В колоде 36 карт. Наудачу *последовательно* (упорядоченная выборка) вынимают 3 карты. Определить число троек содержащих комбинацию валет валет король.
- 2. В студенческой группе (7 девушек и 4 юноши) разыгрываются 3 зарубежных путевки. Определить вероятность того, что путевки получат 2 девушки и 1 юноша.
- 3. Опыт бросание двух монет. События

 $C_1 = \{$ герб на первой монете $\}$

 $C_2 = \{$ хотя бы одна цифра $\}$

Образуют ли эти события полную группу? Совместны ли они или нет? Зависимы или нет эти события?

- 4. Инвестиционный проект длится 3 года. Вероятность катастрофы в каждом годе равна
- 0,1. Наступление катастроф в разных годах независимые события. При наступлении катастрофы проект прекращается. Определить вероятности событий:

проект не состоится (в первом же годе катастрофа),

проект просуществует 3 года

проект просуществует меньше 3-х лет.

Вариант – 3

- 1. В колоде 36 карт. Наудачу последовательно вынимают 3 карты. Сколько троек содержат хотя бы один туз?
- 2. Опыт два выстрела по цели. Вероятность поражения при одном выстреле равна р. События:

 $C_1 = \{$ ни одного попадания $\}$

 $C_2 = \{$ одно попадание $\}$

 $C_2 = \{$ два попадания $\}$

Образуют ли они полную группу? Совместны или нет эти события? Чему равны вероятности этих событий?

- 3. Имеются 2 одинаковые корзины. В первой 3 белых и 4 черных шара, во второй 2 белых и 2 черных шара. Некто подходит наугад к одной из корзин и вынимает сразу два шара. Вероятность того, что эти шары белые ?
- 4. В партии из 100 деталей содержится 10 бракованных. Вероятность того, что выборка из 5-ти деталей содержит хотя бы одну бракованную деталь?

Вариант – 4

- 1. Сколько различных 3-х значных цифр можно составить из 6-ти цифр 0 5, если каждая цифра используется в записи только один раз?
- 2. По каналу связи независимо передаются последовательно 2 сообщения. При передаче сообщение может быть передано правильно или искажено. Вероятность правильной передачи равна 0,8. Рассматриваются события:

 C_1 = (все сообщения переданы правильно)

 $C_2 =$ (все сообщения переданы с искажением)

 $C_3 =$ (первое сообщение передано верно, а второе - нет)

Образуют ли эти события полную группу? Совместны ли они или нет? Чему равны вероятности этих событий?

3. Программа экзаменов содержит 20 вопросов. Студент знает 15 из них. Каждому студенту предлагается 3 вопроса, которые выбираются случайным образом.

Положительная оценка ставится. если студент правильно ответил хотя бы на один вопрос. Чему равна вероятность успешной задачи экзамена?

4. В партии из 100 деталей содержится 10 бракованных. Вероятность того, что выборка из 5-ти деталей содержит хотя бы две бракованные детали?

Вариант – 5

- 1. Студенты одной группы должны сдать экзамены по 3-м предметам в течении 10 дней. Сколькими способами можно составить расписание, если в один день можно сдавать только один экзамен?
- 2. Из цифр 3, 5, 9 составлены всевозможные двузначные числа. Какова вероятность того, что выбранное из этой совокупности число делится на 5?
- 3. Монета подбрасывается 4 раза. Найти вероятность того, что выпадет не менее 1-го герба.
- 4. В магазине имеются телевизоры с импортными и отечественными трубками в соотношении 2:9.Вероятность выхода из строя в течении гарантийного срока телевизора с импортной трубкой равна 0, 005, с отечественной 0,01.Найти вероятность того, что купленный в магазине телевизор выдержит гарантийный срок. (Использовать теорему о полной вероятности)

Вариант – 6

- 1. Студенты одной группы должны сдать экзамены по 4-м предметам в течении 9 дней. Сколькими способами можно составить расписание, если в один день можно сдавать только один экзамен?
- 2. Из цифр 2, 4, 5 составлены всевозможные двузначные числа. Какова вероятность того, что выбранное из этой совокупности число делится на 2?
- 3. Монета подбрасывается 10 раз. X число выпавших гербов. Чему равна вероятность того, что выпадет хотя бы одна решка? Чему равны среднее и дисперсия X?
- 4. Случайная величина X имеет распределение

X -1, 0, 1

P 0.3 0.4 0.3

Пусть $Y = \min\{X, 0\}$. Найти распределение вероятностей с. величины Y, ее математическое ожидание и дисперсию. (Использовать теорему о полной вероятности)

Вариант – 7

- 1. Сколько различных 3-х значных цифр можно составить из 5-ти цифр 0-4, если каждая цифра используется в записи только один раз?
- 2. Опыт: бросание двух игральных костей. События:

 C_1 = (на обоих костях нет шестерок),

 C_2 = (на одной из костей шестерка, на другой - нет).

Определить вероятности этих событий.

- 3. В данный район изделия поставляются двумя фирмами в соотношении 5:8. Среди продукции первой фирмы стандартные изделия составляют 80%, второй 85%. Найти вероятность того, что взятое наугад изделие оказалось стандартным.
- 4. Случайная величина X имеет распределение

Пусть $Y = \max\{X, 0\}$. Найти распределение вероятностей с. величины Y, ее математическое ожидание и дисперсию.

Вариант – 8

- 1. В колоде 36 карт. Наудачу вынимают сразу 3 карты (порядок не играет роли). Сколько троек содержат комбинацию : один туз и две дамы?
- 2. При наборе телефонного номера абонент забыл две последние цифры и набрал их наудачу, помня, что эти цифры нечетные и разные (0 считается ни четным, ни нечетным). Найти вероятность того, что номер набран правильно.
- 3. Два приятеля независимо друг от друга садятся в электричку, состоящую из 6 вагонов. Какова вероятность того, что они окажутся в разных вагонах.
- 4. Приборы одного наименования поставляются двумя заводами; 1-й завод поставляет 2/3 всех изделий, 2-й 1/3. Вероятность безотказной работы в течении года прибора с первого завода равна 0,8, со второго 0,9. Определить вероятность безотказной работы прибора, поступившего на производство. (Использовать теорему о полной вероятности)

Вариант – 9

- 1 Абонент забыл три последние цифры телефона и набирает их наудачу, при этом он помнит, что эти цифры четные и первая цифра делится на 3. Определить число безуспешных попыток в наихудшем случае?
- 2. Игральная кость бросается два раза. Найти вероятность того, что сумма выпавших очков не больше 11.
- 3. Два приятеля независимо друг от друга садятся в электричку, состоящую из 9 вагонов. Какова вероятность того, что они окажутся в одних и том же вагоне.
- 4. Случайная величина X имеет распределение

Пусть $Y = X^2 + 1$. Найти распределение вероятностей случайной величины Y, ее математическое ожидание и дисперсию.

Вариант – 10

- 1. В колоде 36 карт. Наудачу вынимают 3 карты. определить число троек не содержащих ни одного валета? (Порядок выбора карт не играет роли).
- 2. В студенческой группе (8 девушек и 5 юношей) разыгрываются 3 зарубежные путеви. Определить вероятность того, что путевки получат 1 девушка и 2-е юношей.
- 3. В течении года две фирмы могут независимо друг от друга обанкротится с вероятностями 0,1 и 0, 05. Найти вероятность того, что обе фирмы будут функционировать весь год (не обанкротятся).
- 4. Годовая доходность инвестиции R является случайной величиной и имеет распределение

Определить среднюю ожидаемую доходность и вероятность того, что инвестор понесет убытки.

Вариант – 11

- 1. В колоде 36 карт. Наудачу вынимают 3 карты. Сколько троек содержат хотя бы один валет? (Порядок выбора карт не играет роли)
- 2. Опыт два выстрела по цели, вероятность поражения цели при одном выстреле равна р. События: $C_1 = \{$ ни одного попадания $\}$, $C_2 = \{$ одно попадание $\}$,
- $C_3 = \{$ два попадания $\}$. Образуют ли они полную группу? Совместны или нет эти события ? Чему равна вероятности событий $C_1 + C_2$, не C_3 ?
- 3. Имеются 2 одинаковые корзины. В первой 3 белых и 4 черных шара, во второй 2 белых и 2 черных шара. Некто подходит наугад к одной из корзин и вынимает два шара. Вероятность того, что оба шара черные?
- 4. Годовая доходность инвестиции R является случайной величиной и имеет распределение

R -10%, -5% 20%, 50% P 0,2 0,2 0,4 0,2

Определить среднюю ожидаемую доходность и вероятность того, что инвестор не понесет убытки.

Вариант – 12

- 1. Сколько различных четных 2-х значных чисел можно составить из 4-х цифр 0, 1, 2, 3?
- 2. При наборе телефонного номера абонент забыл две последние цифры и набрал их наудачу, помня, что эти цифры нечетные и первая цифра делится на 3. Найти вероятность того, что номер набран правильно.
- 3. Программа экзаменов содержит 20 вопросов. Студент знает 10 из них. Каждому студенту предлагается 3 вопроса, которые выбираются случайным образом. Положительная оценка ставится. если студент правильно ответил хотя бы на один вопрос. Чему равна вероятность успешной задачи экзамена?
- 4. Годовые доходы (в млн. руб.) X1 и X2 двух фирм не зависимы и являются случайными величинами с распределениями вероятностей

X1 -10, 50 X2 -20, 100 P1 0.1 0.9 P2 0.2 0.8

Найти математическое ожидание и дисперсию суммарного дохода (то есть дохода от обеих фирм). Определить распределение вероятностей суммарного дохода.

Вариант – 13

- 1. Сколько различных 2-х значных цифр можно составить из 5-ти цифр 0, 1, 2, 3, 4, если каждая цифра используется в записи только один раз?
- 2. По каналу связи независимо передаются последовательно 2 сообщения. При передаче сообщение может быть передано правильно или искажено. Вероятность правильной передачи равна 0,8. Рассматриваются события:

 $C_1 = ($ оба сообщения переданы правильно)

 C_2 = (первое сообщение передано верно)

Зависимы или нет эти события?

- 3. Из цифр 3, 5, 9 составлены всевозможные двузначные числа. Какова вероятность того, что выбранное из этой совокупности число делится на 3?
- 4. Годовые доходы (в млн. руб.) X1 и X2 двух фирм не зависимы и являются случайными величинами с распределениями вероятностей

X1	-10,	30	X2	-20,	50
P1	0,1	0,9	P2	0,2	0,8

Найти возможные значения суммарного дохода и соответствующие вероятности. Определить ожидаемую доходность и дисперсию суммарного дохода.

Вариант – 14

- 1. В колоде 36 карт. Наудачу вынимают сразу 3 карты (порядок не играет роли). Сколько троек содержат комбинацию: ровно один туз?
- 2. При наборе телефонного номера абонент забыл две последние цифры и набрал их наудачу, помня, что эти цифры четные и разные (0 считается ни четным, ни нечетным). Найти вероятность того, что номер набран правильно.
- 3. Два приятеля независимо друг от друга садятся в электричку, состоящую из 8 вагонов. Какова вероятность того, что они окажутся в одном вагоне.
- 4. В продажу поступила партия изделий, произведенных на двух заводах. Известно, что 70% продукции произведено на 1-м заводе. Среди изделий 1-го завода 4% являются бракованными, среди изделий 2-го – 1% бракованных. Найти Вероятность того, что купленное изделие браковано.

Вариант – 15

- 1. Студенты одной группы должны сдать экзамены по 4-м предметам в течении 12 дней. Сколькими способами можно составить расписание, если в один день можно сдавать только один экзамен?
- 2. Из цифр 2, 3, 4 составлены всевозможные двузначные числа. Какова вероятность того, что выбранное из этой совокупности число делится на 2?
- 3. Монета подбрасывается 5 раз.. Найти вероятность того, что выпадет хотя бы 1 герб.
- 4. В магазине имеются телевизоры с импортными и отечественными трубками в соотношении 3:7. Вероятность выхода из строя в течении гарантийного срока телевизора с импортной трубкой равна 0, 01, c отечественной -0.05. Найти вероятность того, что купленный в магазине телевизор выдержит гарантийный срок.

Вариант – 16

- 1. Студенты одной группы должны сдать экзамены по 3-м предметам в течении 9 дней. Сколькими способами можно составить расписание, если в один день можно сдавать только один экзамен?
- 2. Из цифр 3, 5, 6 составлены всевозможные двузначные числа. Какова вероятность того, что выбранное из этой совокупности число делится на 3?
- 3. Монета подбрасывается 10 раз. Х число выпавших гербов. Чему равна вероятность того, что выпадет хотя бы одна решка? Чему равны среднее и дисперсия Х?
- 4. Случайная величина X имеет распределение

X -1, 0, 1

0,4 0,4 0,2

Пусть $Y = X^2$. Найти распределение вероятностей с. величины Y, ее математическое ожидание и дисперсию.

Вариант – 17

- 1 Абонент забыл две последние цифры телефона и набирает их наудачу, при этом он помнит, что эти цифры четные (0 считается ни четным, ни нечетным). Определить число безуспешных попыток в наихудшем случае?
- 2. Опыт бросание двух костей. События

 $C_1 = \{$ ни на одной кости нет шестерки $\}$

 $C_2 = \{$ на одной из костей шестерка, на другой - нет $\}$

Образуют ли эти события полную группу? Совместны ли эти события? Определить их вероятности.

- 3. Игральная кость бросается два раза. Найти вероятность того, что сумма выпавших очков не больше 10.
- 4. Случайная величина X имеет распределение

Пусть $\mathbf{Y} = \mathbf{X}^2$ - 1 . Найти распределение вероятностей с. величины \mathbf{Y} , ее математическое ожидание и дисперсию.

Вариант – 18

- 1. В колоде 36 карт. Наудачу *последовательно* (упорядоченная выборка) вынимают 3 карты. Определить число троек содержащих комбинацию туз валет король?
- 2. В студенческой группе (7 девушек и 5 юноши) разыгрываются 4 зарубежных путевки. Определить вероятность того, что путевки получат 2 девушки и 2 юноши.
- 3. Опыт бросание двух монет. События

 $C_1 = \{$ герб на второй монете $\}$

 $C_2 = \{$ хотя бы одна цифра $\}$

Образуют ли эти события полную группу? Совместны ли они или нет? Зависимы или нет эти события?

- 4. Инвестиционный проект длится 4 года. Вероятность катастрофы в каждом годе равна
- 0,1. Наступление катастроф в разных годах независимые события. При наступлении катастрофы проект прекращается. Определить вероятности событий:

проект не состоится (в первом же годе катастрофа),

проект просуществует 4 года

проект просуществует меньше 4-х лет.

Вариант – 19

- 1. В колоде 36 карт. Наудачу вынимают 3 карты (порядок выбора не учитывается). Сколько троек содержат хотя бы один туз?
- 2. Опыт два выстрела по цели. Вероятность поражения при одном выстреле равна р. События:

 $C_1 = \{$ ни одного попадания $\}$

 $C_2 = \{$ один промах $\}$

 $C_2 = \{$ ни одного промаха $\}$

Образуют ли они полную группу? Совместны или нет эти события? Чему равны вероятности этих событий?

- 3. Имеются 2 одинаковые корзины. В первой 3 белых и 4 черных шара, во второй 3 белых и 2 черных шара. Некто подходит наугад к одной из корзин и вынимает сразу два шара. Вероятность того, что эти шары белые ?
- 4. В партии из 100 деталей содержится 10 бракованных. Вероятность того, что выборка из 5-ти деталей не содержит бракованных деталей?

Вариант – 20

- 1. Сколько различных 3-х значных чисел можно составить из 6-ти цифр 0-5?
- 2. По каналу связи независимо передаются последовательно 2 сообщения. При передаче сообщение может быть передано правильно или искажено. Вероятность правильной передачи равна 0,9. Рассматриваются события:

 $C_1 =$ (все сообщения переданы правильно)

 $C_2 =$ (все сообщения переданы с искажением)

 $C_3 =$ (первое сообщение передано верно, а второе - нет)

Образуют ли эти события полную группу? Совместны ли они или нет? Чему равны вероятности этих событий?

3. Программа экзаменов содержит 20 вопросов. Студент знает 15 из них. Каждому студенту предлагается 3 вопроса, которые выбираются случайным образом.

Положительная оценка ставится. если студент правильно ответил хотя бы на один вопрос. Чему равна вероятность успешной задачи экзамена?

4. В партии из 100 деталей содержится 10 бракованных. Вероятность того, что выборка из 5-ти деталей содержит хотя бы две бракованные детали?

Вариант – 21

- 1 Абонент забыл три последние цифры телефона и набирает их наудачу, при этом он помнит, что эти цифры четные и первая цифра делится на 2. Определить число безуспешных попыток в наихудшем случае?
- 2. Игральная кость бросается два раза. Найти вероятность того, что сумма выпавших очков не больше 11.
- 3. Два приятеля независимо друг от друга садятся в электричку, состоящую из 7 вагонов. Какова вероятность того, что они окажутся в одном и том же вагоне.
- 4. Случайная величина X имеет распределение

X -1. 0. 1

P 0,2 0,4 0,4

Пусть $Y = X^2 + 1$. Найти распределение вероятностей случайной величины Y, ее математическое ожидание и дисперсию.

Вариант – 22

- 1. В колоде 36 карт. Наудачу вынимают 3 карты. Определить число троек не содержащих ни одного валета. (Порядок выбора карт не играет роли).
- 2. В студенческой группе (7 девушек и 4 юношей) разыгрываются 3 зарубежные путевки. Определить вероятность того, что путевку получит хотя бы один юноша.
- 4. В течении года две фирмы могут независимо друг от друга обанкротится с вероятностями 0.01 и 0.05. Найти вероятность того, что хотя бы одна фирма не обанкротится в течении года.
- 5. Годовая доходность инвестиции R является случайной величиной и имеет распределение

R -10%, -5% 20%, 50%

P 0,1 0,2 0,5 0,2

Определить среднюю ожидаемую доходность и вероятность того, что инвестор понесет убытки.

Вариант - 23

- 1. В колоде 36 карт. Наудачу вынимают 3 карты. Сколько троек не содержат ни одного валета? (Порядок выбора карт не играет роли)
- 2. Опыт два выстрела по цели, вероятность поражения цели при одном выстреле равна р. События: $C_1 = \{$ ни одного попадания $\}$, $C_2 = \{$ одно попадание $\}$,
- $C_3 = \{$ два попадания $\}$. Образуют ли они полную группу? Совместны или нет эти события ? Чему равна вероятности событий $C_2 + C_3$, не C_1 ?

- 3. Имеются 2 одинаковые корзины. В первой 3 белых и 4 черных шара, во второй 2 белых и 2 черных шара. Некто подходит наугад к одной из корзин и вынимает два шара. Вероятность того, что оба шара черные?
- 4. Годовая доходность инвестиции R является случайной величиной и имеет распределение

Определить среднюю ожидаемую доходность и вероятность того, что инвестор не понесет убытки.

Вариант – 24

- 1. Сколько различных нечетных 2-х значных чисел можно составить из 4-х цифр 0, 1, 2, 3?
- 2. При наборе телефонного номера абонент забыл две последние цифры и набрал их наудачу, помня, что эти цифры нечетные и первая цифра делится на 3. Найти вероятность того, что номер набран правильно.
- 3. Программа экзаменов содержит 15 вопросов. Студент знает 10 из них. Каждому студенту предлагается 3 вопроса, которые выбираются случайным образом. Положительная оценка ставится. если студент правильно ответил хотя бы на один вопрос. Чему равна вероятность успешной задачи экзамена?
- 4. Годовые доходы (в млн. руб.) X1 и X2 двух фирм не зависимы и являются случайными величинами с распределениями вероятностей

Найти математическое ожидание и дисперсию суммарного дохода (то есть дохода от обеих фирм). Определить распределение вероятностей суммарного дохода.

Критерии оценки

14-15 баллов ставится, если:

- работа выполнена полностью;
- в логических рассуждениях и обосновании решения нет пробелов и ошибок;
- в решении нет математических ошибок (возможна одна неточность, описка, не являющаяся следствием незнания или непонимания учебного материала).

12-13 баллов ставится, если:

- работа выполнена полностью, но обоснования шагов решения недостаточны;
- допущена одна ошибка или два-три недочета в решении.

10-11 баллов ставится, если:

• допущены более одной ошибки или более двух-трех недочетов в решении задачи, но учащийся владеет обязательными умениями по проверяемой теме.

0 баллов ставится, если:

• допущены существенные ошибки, показавшие, что учащийся не владеет обязательными умениями по данной теме в полной мере

Задания на промежуточную аттестацию (экзамен)

ВАРИАНТ №1

1. Найти a)
$$\lim_{x \to 2} \frac{x^2 + x - 6}{x - 2}$$
; $\lim_{x \to \infty} \frac{2x}{x - 1}$

2. Найти a)
$$\int \frac{xdx}{2\sqrt{x}}$$
: 6) $\int \frac{\cos xdx}{1+\sin^2 x}$.

3. Найти производные следующих функций:

a)
$$y = \frac{\sin x - \cos x}{\sin x + \cos x}$$
; 6) $y = e^x \cdot (x^3 + 3x^2 + 6x + 6)$

- 4. В ящике имеется 10 деталей; из них 6 деталей первого сорта и 4 детали второго сорта. Из ящика наугад берутся 4 детали. Какова вероятность того, что среди них не будет ни одной детали второго сорта?
- 5. В первой урне 4 белых и 6 черных шаров. Во второй урне 1 белый и 9 черных шаров. Из наудачу взятой урны вынули один шар. Тогда вероятность того, что этот шар окажется белым, равна...

ВАРИАНТ №2.

1.Найти a)
$$\lim_{x \to -5} \frac{x^2 + 4x - 5}{x + 5}$$
; b) $\lim_{x \to \infty} \frac{1 - x^2}{1 + 2x^2}$
2.Найти a) $\int \frac{2\cos^2 \theta + 1}{\cos^2 \theta} dx$: б) $\int \frac{\sqrt{\ln x + 1}}{x} dx$

3. Найти производные следующих функций:

a)
$$y = \ln \sin x + \frac{1}{2} \cos^2 x$$
; 6) $y = e^{\arcsin \frac{1}{x}}$

- 4.Игральная кость бросается один раз. Тогда вероятность того, что на верхней грани выпадет *не менее трех очков*, равна...
- 5.В первой урне 2 черных и 8 белых шаров. Во второй урне 3 белых и 7 черных шаров. Из наудачу взятой урны вынули один шар. Тогда вероятность того, что этот шар окажется белым, равна...

ВАРИАНТ №3.

1.Найти a)
$$\lim_{x \to 3} \frac{x-3}{x^2 - 6x + 9}$$
; 6) $\lim_{x \to \infty} \frac{x^2 + x^3}{x^4 + x^5}$
2.Найти a) $\int \frac{2x+3}{\sqrt{1-x^2}} dx$: 6) $\int \frac{e^{2x} + e^x \cdot \sin x}{e^x} dx$.

3. Найти производные следующих функций:

a)
$$y = \frac{x^3 - 1}{x^3 + 1}$$
;
 6) $y = \frac{1}{4}tg^4x - \frac{1}{2}tg^2x - \ln\cos x$.

- 4.Три стрелка независимо друг от друга производят по одному выстрелу. Их вероятности попадания в цель равны, соответственно, 0,5; 0,7; 0,6. Определить вероятность хотя бы одного попадания
- 5.В первой урне 5 белых и 5 черных шаров. Во второй урне 3 черных и 7 белых шаров. Из наудачу взятой урны вынули один шар. Тогда вероятность того, что этот шар окажется белым, равна...

Критерии оценки

На экзамен отводится максимум 30 баллов. Аттестация проводится в форме итогового тестирования. Задание состоит из 15 вопросов, как теоретического, так и практического характера. За каждый правильный ответ выставляется по 2 балла. Далее все баллы суммируются (зачет и рубежный контроль) и выставляется оценка.

- 27 30 баллов правильно выполнены все задания;
- замечаний по оформлению решений нет;
- работа выполнена аккуратно без исправлений.
- 21- 26 баллов правильно выполнено не менее
- имеются несущественные замечания по оформлению решения;
- работа выполнена аккуратно, допущено не более двух исправлений.

15 -20 баллов

- правильно выполнено не менее 50% заданий;
- имеются несущественные замечания по оформлению решения;
- работа выполнена неаккуратно, допущено не более двух исправлений.

0 баллов

- правильно выполнено менее 50% заданий;
- имеются существенные замечания по оформлению решения.

Шкала оценки образовательных достижений (по БРС)

Баллы	Оценка	
86 - 100	отлично	
71 - 85	хорошо	
56-70	удовлетворительно	
36 - 55	неудовлетворительно	
0-35	Не допуск	

3. Перечень используемых материалов, оборудования и информационных источников

Основные источники

Григорьев, С. Г. Математика : учебник для использования в учебном процессе образовательных учреждений, реализующих образовательные программы среднего профессионального образования / С. Г. Григорьев, С. В. Иволгина. — 5-е изд. стер. — Москва : Академия, 2020. — 416 с. — Текст : непосредственный.

Электронные издания

- 1. Богомолов, Н. В. Математика : учебник для среднего профессионального образования / Н. В. Богомолов, П. И. Самойленко. 5-е изд., перераб. и доп. Москва : Юрайт, 2024. 401 с. (Профессиональное образование). ISBN 978-5-534-07878-7. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/
- 2. Богомолов, Н. В. Практические занятия по математике в 2 ч. Часть 1: учебное пособие для среднего профессионального образования / Н.В. Богомолов. 11-е изд., перераб. и доп. Москва : Юрайт, 2024. 571 с. (Профессиональное образование). ISBN 978-5-534-18419-8. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/534966

3. Попов, А. М. Математика для экономистов. В 2 ч. Часть 2: учебник и практикум для среднего профессионального образования / А. М. Попов, В. Н. Сотников. – 2-е изд., перераб. и доп. – Москва : Юрайт, 2024. – 295 с. – (Профессиональное образование). – ISBN 978-5-534-09458-9. – Текст : электронный // Образовательная платформа Юрайт [сайт]. – URL: https://urait.ru/bcode/541695

Дополнительные источники:

- 1. ЭБС Юрайт : электронная библиотечная система : сайт. Москва, 2013.
- 2. URL: https://biblio-online.ru. Режим доступа: для зарегистрир. пользователей. Текст : электронный.
- 3. Φ ЦИОР: информационная образовательная система : сайт. Москва, 2021. URL: http://fcior.edu.ru.
 - 4. ЦОР Единая коллекция: сайт. Москва, 2006. URL: http://school-collection.edu.ru.
- 5. Башмаков, М. А. Математика : алгебра и начала математического анализа, геометрия / М. И. Башмаков. Москва : Академия, 2020. 256 с. ISBN-978-5-4468-9248-8. Текст : непосредственный.
- 6. Кремер, Н. Ш. Математика для колледжей : учебное пособие для среднего профессионального образования / Н. Ш. Кремер, О. Г. Константинова, М. Н. Фридман; под редакцией Н. Ш. Кремера. 12-е изд., перераб. и доп. Москва : Юрайт, 2024. 408 с. (Профессиональное образование). ISBN 978-5-534-17852-4. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/536272